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ABSTRACT

The semi-empirical algorithm of [1] for the estinoat

of turbidity (T) from marine reflectance Rt is
calibrated and validated using a large datasen aftu
measurements collected in various waters, for use w
any ocean colour hyperspectral sensor, and with
Sentinel-2, Landsat 8 and Pléiades spectral baltks.
relationship  between particulate  backscattering
coefficient p,p) and side-scatteringl) is investigated
through simulation of Fournier-Forand phase fumgijo
assuming variable particles size and compositiomo T
algorithms for the estimation of,, at 850nm and
suspended particulate matte&8PM from turbidity are
proposed, and calibrated and validated uding,, and
SPMin situ measurements in clear to extremely turbid
waters.

1. INTRODUCTION

In-water suspended particulate matter concentrgtion
(SPM) is of interest in various oceanographic redea
fields (e.g. underwater light attenuation and vigih
sediment transport modelling) and can be mapped fro
satellites.

Since several decades, remote sensing algorithwes ha
been developed to retrieve SPM from marine
reflectanced,) in open ocean case 1 waters, and later in
coastal waters with complex optics. However, these
algorithms show large uncertainties when applied to
waters with specific inherent optical properties(Bs)
different from those assumed in the algorithms.

Water turbidity, T, a measurement of particles side
scattering, has been demonstrated to be not ogbod
proxy to SPM [2], but also to be highly correlated
marine reflectance in the red and near infraredtsple
ranges, e.g. [1]. Moreover, Dogliotti et al. (2013]
found that the relationship between T and Rrs iy on
weakly sensitive to the natural variability of SI©&nd

to the particulate scattering phase function.

2. DATA AND METHOD

from 2007 to 2015 (Fig. 1): the southern North Sea
(SNS) -including measurements in the Scheldt Egtuar
(SC est.) and in the Belgian port of Zeebrugge (ZB)
the Mediterranean Sea (MS), the Scheldt River (81€),
Gironde (GR) and Rio de la Plata (RP) estuariesimnd
the French Guiana coastal waters (FG). Supplementar
in water measurements were performed in Belgium and
France: in May 2015, at the Senne Canal (S1) and
Senne River (S2) located in Machelen, north of
Brussels, and at two pontoons along the SchelderRiv
denoted P1 (in Kallebeek), and P2 (in Antwerp)Juty
2015 at MOW1 located in the southeast of the pbrt o
Zeebrugge, in the SNS; during February 2016, in the
Rhoéne River plume (denoted RE), south of France. (Fi
1). A summary of measurements per site is given in
Tab. 1.

2.1. Radiometric measurements

Radiometric measurements were performed
simultaneously with water sampling and/or in water
measurements in the southern North Sea using the
above-water Trios (Rastede, Germany) Optical System
(TRIOS), composed of three RAMSES hyper-spectral
spectroradiometers, where simultaneous measurements
of the above-water downwelling irradiancedj, the
upwelling radiancel(seg and the sky radiancd.gky)
were acquired to estimate the water-leaving redleamt

(obw) as pu= (Lsea- rf Lsky)/Ed=Lw/Ed where rf
accounts for the fraction of refractddky at air-sea
interface (Fresnel reflectance), and is estimatedn f
wind speed [4] in clear sky conditions, and sed.ti265

in overcast conditions [5]. The sites FG, MS [6(;,S
GR and RP [3], were also monitored using the same
radiometric instruments, following the protocol [&f.

A set of 338 measurements were available aftehdurt
quality-control of the data to insure low variatyiliof

sky conditions and of the water mass: the coefficad
variation, CV coefficients (defined as the ratio thé
standard deviation by the average) sky/Ed Lsky, Lw
andp,, over the 5 best scans selected at each statin, ar

Above water and in-water measurements have been |ogs than 25%.

carried out in various coastal waters around thedvo
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2.2. In water measurements

Simultaneously  with radiometric measurements,
samples were collected for estimation of T and SRM
stations within the sites in Tab. 1.a. Turbidityde®PM
measurements are further quality checked using the
criteria 0.5 < SPM/T < 1.5 g ThFNU™. Turbidity

measurements and in water continuous measurenients o

optical side- and back-scattering were performethat
sites listed in Tab. 1.b.

Turbidity was obtained using the portable HACH
2100P/Q ISO7027 (1999) turbidimeters which measure
the ratio of light emitted at 860nm and scattere@0&

to the transmitted light, this turbidity is givem i
Formazin Nephelometric units (FNU).

In water continuous measurements were carried out
using the following optical instruments:

- Hydroscat-4 (HOBI Labs), denoted by HS4, measures
the spectral backscattering coefficieris (m™) over
scattering angles [100°-160°] centered around 184,

at four wavelengths. In this paper, oblys, (at 850nm)

is used, for comparison with OBfgz measurements.

- The optical backscatter OBS500 (Campbellsci),
referred to hereafter by OBS, measures the side-
scattering lfs, at 90°) and backscatterinb,, between
125° and 170°) in Formazin Backscatter Units (FBU),
using a LED emitting light at 860nm.

- The Laser In Situ Scattering and Transmissometry,
LISST-100X type C (Sequoia Scientific), is used tfoe
estimation of particles size distribution (PSD).t&that

the LISST was deployed only at the Rhéne River glum
site.

The OBS provides average values and standard
deviations, minima and maxima fdtg and by,g over 1
min. The HS4 was set to measbyeat a rate of 2 scans
per second. These data were further quality cdattol
and processed to a) reject the first and last sabeach
station and measurements taken at less than 1@pth d
(remove bubbles affect), b) correct HS4 for paeticl
absorption along photon pathlength, using the imgado
sigma-correction method for turbid waters [7], eject
negative or unrealistic data, and average HS4 aata

1 min windows, d) remove OBS and HS4 data with high
coefficient of variation, CV, exceeding 25% ovemin
window, where CV is defined as the ratio of the
standard deviation by the average value. The last
mentioned quality control mainly removes air bulsble
effects due to emerging or moving the sensor othef
water.

The random shape inversion matrix was used to
estimate the volume concentratiov] in pl/l) from
LISST measurements, in each size clas¥he Junge
parameter,y, was computed following [6], with the
number of particles, NIj) in a given size class

estimated fromV\C], the particles diameteD() and
size classed\D; = D; - D;_; (2<i<31) as follows [8]:

ﬁxloﬂl

N(Di): 3 3
570’0,

1)

Table 1: a) Stations above- and in-water measurdsnen
sites, years, parameters, thélediarf.* values, and
number of stations (N); b) Continuous in-water
monitoring sites, years, parameters, thélediar."
values, and number of days of measurement (D).

Site |Year(s) pw10?® SPM T N
780nm (@m®) (FNL)
FG 2009 805 14147 | 1394% 26
GR [2012,2013| 11821%% | 4557% |55194% | 44
MS 2009 07% 06 072 11
SC |2007-2015| 4951 | 1678%" |1613%% 23
SCest|2007-2015 | 117 11628 | 124% 5
SNS |2007-2015| 1117 15533° | 183" 168
ZB [2007-2015| 178% 127% 141% 9
RP |2012, 2015 426%° 71552 | g76L® 52
Site |Year,D bs bos  |boeso (%) T y
(FBU) |(FBU) | (m™) |(FNU)
RP | 2015 5 |500% |4047% | 510% |579%° | -
RE |2016,2 | 1732 |93% | 93 [259% |308%
SR1 |2015,1 | 173 |08 | 235 |36 | -
SR2 |2015,1 | 349% |230% | 3052 (2987 | -
PL 20151 |13543¢ |805% |107357 [14900] -
P2 | 2015, 1 (148722 8561 (107224 |1740%% -
MOW1 |2015,1 | 3245 (196%¢ | 25522 4057 | -

2.3.Turbidity model calibration

Using the turbidity model [1], type Il linear regsgon
analysis are performed on a subset of 162 turbatiky
TriOS hyperspectral,(A;) measurements, fa¢ ranging
from 550 to 885nm, with a step of 2.5nm, and on a
similar subset where TriOS reflectance spectra were
convoluted with Sentinel-2 MSI, Pléiades and Lat®isa
OLI sensors spectral response functions. To ajupdat
regression analysis, the independent varighl&) is
transformednto X(1) as follows:

A
% ()= —2ul2)

1- py (A )ic(a)
with values of CX) set as tabulated in [1], and set equal
to 1.20 times the maximum reflectance measured, if

these latter exceed values in [1] (to avoid model
reaching its asymptote). The model is re-written as

T=A(1)x(1)+8(1) 3)

()
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Figure 1. The locations of measurements within$ S
SC est., SC, GR, MS sites monitored from 200716 20
(a, right), in the Senne and Scheldt Rivers on RIS
(a, left), and of RE (Rhéne River plume) on Febyuar
2016; b) RE site (zoomed): the red, yellow and gree
stars represent stations where simultaneous
measurements of OBS and LISST are available
(different colours used for different distancesirthe
River mouth), the grey colour is where only LISST
measurements are available. The ellipses delirait th
three zones Z1, 72 and Z3 (see text for details}; @
FG and RP sites, with the red (green) squares Shpwi
locations of reflectance and turbidity measurements
used for calibration (validation) of turbidity algithm,
and the white triangles the locations of LISST, @GB&
HS4 measurements.

To validate the calibrated model, the second subfet
176 measurements of T apg(};) is used, if which 87%
(153 measurements) correspond to T>10 FNU.

2.4. Fournier-Forand simulations

Fournier-Forand simulations are performed to obtain
volume scattering functions (VSF) for refractive
indices, r;, varying in 1.01 to 1.54&ncompassing the
ranges of inorganic and organic particles [9], &od
Junge coefficientsy, in [3.1-5.0], covering the ranges
found in casel and case2 waters [6]. From these
simulations, assuming spherically shaped partidles,
ratio bydby, is obtained at each couplg)). The aim is to
examine the distribution of the modellddb, versus
(ri,y), to understand the distribution of thesitu by/b,g
versus the Junge parameter estimated from LISST
measurements.

3. RESULTSAND DISCUSSION

The results of turbidity algorithm calibration and
validation are presented (3.1), the relationshigtsvben
the side- and back-scattering coefficients are esf#rd
for the different field measurements (3.2), and the
variation of thebdb, ratio is investigated fronm situ
measurements and Fournier-Forand simulations (3.3).

3.1. Turbidity model results

Tab. 2 lists the calibration coefficients A and the
coefficient C and the coefficient of determinatiafithe
goodness of fit of the regression curves, R2, for t
turbidity model (Eq. 2-3), for wavelengths rangiingm

600 to 885nm. A similar table is provided for thends

of the three sensors Sentinel2-MSI, Pléiades and
Landsat-8 OLI (Tab. 3).

The hyperspectral calibration gives the best fittin
curves for T and associatgg in the near infrared (NIR)
spectral ranges 720-730nm and 790-820nm, with
RZ>93%.

The validation of the models using the full randehe
validation subset yields mean absolute percentagese
(MAPE) higher than 45%, for all wavelengths, beeaus
of the larger scatter of data in the low turbidignge
(due to higher reflectance measurements uncesaiirti
clearer waters). When the validation is performsuhg
the reduced subset over T>10 FNU, MAPE decreases to
33-34% at 720-732.5 nm and to 32-34% to 777.5-
825nm. An example of calibration curve and valioiati

is shown in Fig. 2. At shorter wavelengths690nm,
the effects of absorption by algae particles on
reflectance decrease the performance of the taybidi
model that assumes low variability of particles
backscattering to absorption ratio [3]. At longer
wavelengths. >830nm, the uncertainties of reflectance
measurements likely due to Fresnel correction pyatea

to the turbidity model.

3.2. Side- and back-scattering measurements

The OBS side-scatterings and HACH turbidity (T)
measurements are highly correlated, at all siteg (n
shown here).
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at 860nm, integrated over a range of scatterindeang
slightly different than the scattering angles of4{&nd
calibrated in reference to Formazin, is converttbl¢he
bosso (in m?) through the relationship:b,s=76.6
bpgst0.06 (MAPE=6.4% for 020,s<200 FBU), with
MAPE dropping below 5% folo,z>10 FBU.

The ratiobdbyg from continuous measurements varies
significantly within each site, and between thesitits
median values range from 1.46 in Rio de la Plath an
the Senne River (SR2) to 2.15 in the Senne Carale w
very similar values (~1.70) are found in the SN8 #re
Scheldt River, and slightly higher value (1.90)tlax
Rhoéne River plume site. The averdgt,s for all sites

is 1.72.

2015-11-18 2015-11-19

[RP (Rio de la Plata) |

2015-11-20 2015-11-23 2015-11-24 a0
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ST R
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\(,a RESPE N L I N @ﬂ o2 @nﬁqﬁ»

Figure 3. Continuous 1min-averaged measurements of
bys and hygse respectively in red and black, and their
standard deviations in orange and cyan, at Rio ae |
Plata (top), the Senne (SR1, SR2) and ScheldtRP1,
locations (bottom left) and at MOW1 (bottom right).

Fig.4.b shows the variability df/b,z in terms ofbs. At
high turbidity ranges be>30 FBU) byJbps generally
increases with increasinbs. In clearer watersh{<2
FBU), the OBS backscattering coefficient approaches
zero, yielding larger uncertainties in the estirdate
bd/bys. In the medium turbidity range (2 to 30 FBU) the
ratio spans 3 folds from 1.2 to 3.0, where higtegior
values are associated to lower turbidity.

In the following, the ratiobd/b,s at the Rhéne River
plume site is examined, as regards the spatial
distribution (indicating particles type/compositjoand
particle size distribution.

The ratiobydbyg is highly correlated withpg, in the low
range bs <20 FBU (Fig.5.a), increasing from 1.36 to
2.43. For higher turbidityp; >20 FBU, bgdbys varies
slightly around 1.8.

The general distribution diybyg in terms ofy (Fig.5.b)
suggestsin situ particles have refractive indices
significantly lower than the Mie-theoretically entited
refractive indices for similar ranges lafb,. The use of
the random-shape inversion model in our calculatibn

v likely has limited the overestimation of small fiaes
concentration, as obtained from Mie-based modet (no

shown here) [10].
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Figure 5. a) The ratio #bys versus bfromin situ
measurements at RE site, bks versus Junge
parametery, estimated fronm situ measurements at RE
(coloured circles), and b, versus from Fournier-
Forand simulations at three refractive indices (ded
lines). The colours of the symbols relate the pmsstof

stations as in Fig.1 (left) and to measurement ldept

(right).

In the areas Z1 and Z2, sediment particles from
terrigenous origin (river load) are more likely to

dominate, while coarse

r

algae-dominated particles

dominate in the area Z3 (the farthest from the Rhon
estuary) [11] which is corroborated by Fig.5.b: the
variation of the simulated/b, in terms of refractive
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indices suggests that particles in Z1-Z2 have gdiyer
higher refractive indices than the particles in ZBe
measurements in Z1 present relatively more pasticle
with small size §>3.3) than in the area Z1.

Very low y values are obtained from measurements in
the three Rhéne zones Z1-Z3, down to 2.6, which is
lower than the values reported for the open se#, bu
agree with estimations reported for coastal wa@}s
Discarding out-of-range finer particles (<2.7ungnfry
calculation could have affected the accuracy of3TS
derived PSD, shifting towards smaller ranges (larger
particles concentration). On the other hand, higher
values up to 3.56 were estimated mostly from
measurements made just below the water surface
(depth0.7m). Note that these highvalues may have
been biased by stray light effects encountered trear
sea surface [12], [13].

Fig.6 presents the ratido/b, obtained from the
simulated VSF. Thégb, decreases at a rate of 56%
from 1.70 to 0.75 withy increasing from 3.2 to 5, for
particles with small refractive indices (<1.1). Fogher
refractive indices the variability obgdb, value for
increasingy is slightly reduced (e.g. 48% gt1.3, and
45% atr;=1.53). For high>4.8, byb, values almost do
not vary with increasing refractive index (only lay
factor less than 5%), and that variation increatesly
with decreasingy. In the lower rangey<3.4, the
maximum percentage variation lmfb, is 20%.

While the refractive index is the main factor that
impacts the backscattering rakiglh, whereb is the total
scattering coefficient [14], [15], our simulatioimslicate
that the particle size distribution is the main téac
contributing to variations iby/by,.

Figure 6. The ratiob, /b, estimated from Fournier-

Forand scattering phase function, in terms of thegk
parameter and the refractive index.

4. CONCLUSION AND PERSPECTIVES

The turbidity model [1] is recalibrated and valieicht
proving its applicability to a large range of tudiby
from moderate to extremely turbid waters (10-1500
FNU). The calibration coefficients are provided for

hyperspectral sensor as well as for the Sentindis2,
Pléiades and Landsat8 OLCI sensors.

The relationship betweenn situ side- and back-
scattering coefficients shows a large variabilifytioe
ratio bdby in the lower turbidity range (<20 FNU).
However, this variability decreases drastically hwit
increasing turbidity indicating the predominance of
particles with less heterogeneity as regard their
type/composition and size. Simultaneous OBS and
LISST measurements shed light on the important part
played by PSD in the variability di/b,: particles from

the same areas (indicating similar origin, type and
composition) exhibit &4by, ratio which decreases with
increasing Junge power, i.e. with finer particlésitt
dominate the water mass. This is corroborated by
Fournier-Forand simulations, which further indicttat

for a given particle sizéh/by, decreases with increasing
refractive index.

Forin situ measurements, accurate retrieval of PSD and
refractive indices can be performed by means of
improved models for inversion of the volume scattgr
function, with a better representation of variohafges

of particles e.g. [16].

From a remote-sensing perspective, the retrievahef
side-scattering coefficient (using a turbidity mBdend
backscattering coefficient (by inversion of the
reflectance model, e.g. QAA model) from marine
reflectance can help providing information on paes
refractive index, by inspecting the variability dfe
side- to back-scattering ratio with particle size.
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