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ABSTRACT 

Ocean colour remote sensing has become a well-

established method for the monitoring of coastal waters. 

The MERIS chlorophyll product for turbid waters 

(algal_2) and the total suspended matter product (tsm) 

have been used in applications such as algal bloom 

detection, eutrophication monitoring, and coastal 

sediment transport. These MERIS L2 products are 

sometimes contaminated by cloud shadow pixels and 

the same problems are likely to occur in Sentinel-3. In 

order to avoid erroneous data passing quality control 

and being used in applications, an automated method for 

detecting and removing cloud and cloud shadow pixels 

is needed. With this in mind, we highlight the problems 

with MERIS in the past and show some results from 

applying detection methods to Landsat-8 data with the 

objective of using these methods for Sentinel-2 and -3 

in the future.  

 

1. Introduction 

As a follow up to the MERIS, MODIS and SeaWiFS 

missions, the Sentinel-3 satellite with its Ocean and 

Land Color Instrument (OLCI) will supply operational 

services for land, coastal and marine environmental 

monitoring. OLCI will provide multispectral medium 

resolution imagery, with high spectral and temporal 

resolution (1-3 days). 

 

OLCI has been designed with strong heritage from the 

MERIS mission. In this context it is important to 

identify the shortcomings of the MERIS products and 

see how these can be avoided with OLCI. A problem 

common to all earth observation satellites is the 

presence of clouds and clouds shadows (Fig. 1). 

 

The MERIS Case 2 chlorophyll products [1] have been 

used for applications in turbid waters such as the 

detection and timing of algal blooms [2] and for the 

validation of an ecosystem model [3]. The MERIS 

products have been very useful but it is important to 

note that the MERIS L2 chlorophyll and tsm products 

are sometimes contaminated with unmasked cloud 

shadow pixels in the third reprocessing (R3) and prior 

processor versions. This is still the case when applying 

the PCD_17 and PCD_16 flags for algal_2 and tsm 

respectively as seen in Fig. 2 and Fig. 3. 

 

When using the R3/PCD_1_13 flag to flag for bad 

pixels (Fig. 4) we remove many of the cloud shadow 

pixels as well as many other pixels.  Additionally there 

are some cloud shadow pixels especially in turbid 

waters that are not flagged as cloud shadow pixels and 

therefore give incorrect data. Thus, using the PCD_1_13 

flag is not ideal. 

 

We also processed the MERIS data with SeaDAS/l2gen 

(version 7.2) with the extended standard approach[4], 

[5] for atmospheric correction. Using SeaDAS 

processing we see similar problems. Using the LOWLW 

flag (low reflectance at 555nm) we see in Fig. 5a and b 

that some cloud shadows are masked in clear waters but 

that cloud shadows are not masked in more turbid 

waters.  

 

A methodology originally developed for the Landsat-8 

Operational Land Imager (OLI) is described here as a 

basis for a future OLCI algorithm for cloud and cloud 

shadow detection. 

 

2. Data and Methods 

Landsat L1 data in GeoTIFF format obtained  from 

USGS is used. Digital Numbers from the Landsat L1 

files are converted to Top of Atmosphere (TOA) 

reflectance and then further processed into Rayleigh 

corrected (Rc) and marine reflectance (rhow) using 

ACOLITE [6], [7]. Additionally, brightness temperature 

is calculated from the Landsat-8 Thermal Infrared 

Sensor which provides thermal bands at 100 meters 

resolution which are resampled to 30 meters to match 

multispectral bands. 

 

A cloud and cloud shadow identification method is 

adapted from the Fmask algorithm of Zhu and 

Woodcock [8], [9]. A number of steps are used to test 

for cloud contamination of pixels (Fig. 6). Two passes 

are used to identify cloud pixels.  

 

The first pass uses the spectral information from the 

TOA and Rc data. The basic test (eq. 1) sets thresholds 

for the normalized difference vegetation index (NDVI) 

and normalized difference snow index NDSI at less than 

0.8, the SWIR reflectance 2201nm at greater than 

0.0215 and the Brightness Temperature at less than 
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27deg C. The whiteness test (eq. 3) flags pixels with a 

whiteness greater than 0.7. The Haze Optimized 

Transform (HOT) Test (eq. 4) is used to flag pixels 

where (blue – red/2) is greater than 0. The cirrus test 

(eq. 6) is used to identify cirrus clouds as pixels with a 

TOA reflectance at 1373nm of greater than 0.01. The 

potential cloud pixels (PCP) are then flagged using the 

eq. 8. 

 

The second pass uses spatial information from the 

scene. Temperature probability (eq. 10), brightness 

probability (eq. 11) and variability probability (eq. 16) 

are calculated, the method being slightly different over 

land and water [8]. Water cloud probability (eq. 12) and 

land cloud probability (eq. 17) are calculated from 

these. This removes many of the inaccurately assigned 

cloud pixels.  

 

To identify cloud shadow, the sun zenith and azimuth 

angles are used to estimate the region where pixels may 

fall in the shadow of the cloud. An estimation of cloud 

height for each cloud object, or a maximum cloud 

height of 12000m may be used to determine the cloud 

shadow region. Low reflectance in the visible, NIR and 

SWIR bands are used with the geometric information 

(projection of cloud object) to flag possible cloud 

shadow pixels. Thus, pixels with low reflectance that 

also fall within what is estimated to be the cloud shadow 

are flagged as cloud shadow pixels. 

 

Mountain shadows could similarly be identified by 

using a digital elevation model (DEM). A mountain 

shadow can be predicted by using the sun zenith, sun 

azimuth angles and the mountain height and in this way 

mountain shadow falling on water surfaces can be 

flagged as mountain shadow. 

 

 

3. Results 

An example from the Belgian Coastal zone in the 

Southern North Sea (Fig. 7) shows successful pixel 

identification in the Landsat Scene 

LC81990242013280LGN00 for land, water, cloud and 

cloud shadow.  

 

Fig. 7 shows an RGB image, cloud pixel identification, 

cloud shadow identification and a composite of cloud 

and cloud shadow pixel on a smaller subset. Although 

most cloud shadow pixels are identified it appears as if 

the cloud shadow flag would benefit from a one to three 

pixel buffer. 

 

In this scene, some water pixels with a low reflectance 

are masked as cloud shadow pixels even though it 

appears as if they are not. This is due to the proximity of 

some clouds to water with a relatively low reflectance to 

the rest of the water.  In turbid water it may be easier to 

identify cloud shadow using low reflectance values in 

the visible bands. 

 

Validation is done subjectively, currently the most 

effective way of assessing cloud and cloud shadow 

masks. The procedure has been repeated for other 

relatively cloud free scenes in Belgian waters with 

similar results. 

 

4. Discussion 

The 21 bands in Sentinel-3 OLCI are based on the 15 

bands from MERIS (Table. 1). Due to differences in 

their respective objectives, there are differences 

between the bands available in Landsat-8 (Table 3) and 

Sentinel-3 OLCI. Important difference for cloud and 

cloud shadow identification include the absence of a 

cirrus band, the thermal infrared (TIR) bands (which is 

on Landsat-8 TIRS) and short wave infrared bands 

(SWIR). This provides some limitations on cloud and 

cloud shadow identification. 

 

The absence of these bands mean that calculating the 

brightness temperature, using a SWIR threshold and 

identifying cirrus clouds will not be possible using 

OLCI alone. Information from the Sentinel-3 SLSTR 

bands might be used to supplement the information 

from the OLCI bands. 

 

The whiteness test [10] and the Haze Optimized 

Transform test [11] can still be used with the bands 

available from Sentinel-3 OLCI for the first pass of the 

cloud identification method. The second pass would not 

be possible with OLCI bands alone as it relies on the 

brightness temperature or cirrus probability [8]. 

 

The Sentinel-3 SLSTR sensor (Table. 2) will have the 

bands that OLCI requires albeit at a different resolution 

than the OLCI bands, with 500m for the solar 

reflectance band and 1km for the thermal bands. In 

addition to cloud and cloud shadow identification, the 

Sentinel-3 SLSTR sensor could be useful for 

atmospheric correction and pixel identification provided 

that co-location and intercalibration are good (Ruddick 

and Vanhellemont, 2014, this issue). 

 

Sentinel-3 OLCI will have an oxygen absorption band 

and a maximum water vapor absorption band which will 

make it useful for identifying cloud pixels and 

estimating cloud height. Cloud height is an important 

component in calculating the geometry for the cloud 

shadow identification. The band at 1020nm will also be 

useful for cloud and snow differentiation. A 

combination of good cloud pixel identification and 

cloud height estimation will be very useful for 
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calculating the cloud shadow mask based on sun and 

sensor geometry. 

 

5. Conclusion 

MERIS L2 products are sometimes contaminated with 

unmasked cloud shadow pixels, particularly for turbid 

waters. This will likely be a problem with Sentinel-3 L2 

products.  

 

Using Landsat-8, it is shown that it is possible to 

automatically mask cloud shadow pixels. The methods 

used to identify cloud and cloud shadow pixels can be 

adapted to Sentinel-3 as well as Sentinel-2.  

 

With the OLCI oxygen absorption and water vapour 

bands, as well as the bands available on the SLSTR 

sensor, it should be possible to create a cloud and cloud 

shadow flag to avoid pixel contamination in Sentinel-3 

products. 
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7. Equations 

𝑏𝑎𝑠𝑖𝑐 𝑡𝑒𝑠𝑡 =  𝜌𝑟𝑐
2201 > 0.0215 𝑎𝑛𝑑 𝐵𝑇 < 27℃ 𝑎𝑛𝑑 𝑁𝐷𝑆𝐼

< 0.8 𝑎𝑛𝑑 𝑁𝐷𝑉𝐼 < 0.8 
1 

 

𝑀𝑒𝑎𝑛𝑉𝑖𝑠 =
𝜌𝑡𝑜𝑎
483 + 𝜌𝑡𝑜𝑎

581 + 𝜌𝑡𝑜𝑎
655

3
 

2 

𝑊ℎ𝑖𝑡𝑒𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥 =  ∑ |
(𝜌𝑖 −𝑀𝑒𝑎𝑛𝑉𝑖𝑠)

𝑀𝑒𝑎𝑛𝑉𝑖𝑠
| < 0.7

𝑖=483,561,655

 
3 

 

𝐻𝑂𝑇 𝑡𝑒𝑠𝑡 = 𝜌𝑡𝑜𝑎
483 − 0.5 ∗ 𝜌𝑡𝑜𝑎

561 − 0.08 > 0 4 

𝑛𝑖𝑟/𝑠𝑤𝑖𝑟 𝑡𝑒𝑠𝑡 = (
𝜌𝑟𝑐
865

𝜌𝑟𝑐
1609

> 0.75) 
5 

𝑐𝑖𝑟𝑟𝑢𝑠 𝑡𝑒𝑠𝑡 = 𝑐𝑖𝑟𝑟𝑢𝑠 𝑏𝑎𝑛𝑑 > 0.04 

𝑐𝑙𝑒𝑎𝑟 − 𝑠𝑘𝑦 𝑤𝑎𝑡𝑒𝑟 = 𝑤𝑎𝑡𝑒𝑟 𝑡𝑒𝑠𝑡 (𝑇𝑟𝑢𝑒) 𝑎𝑛𝑑 𝜌𝑟𝑐
1609

< 0.03 

 

 

6 

7 

 
 

𝑃𝐶𝑃 =

(

 
 
 
 
 

𝐵𝑎𝑠𝑖𝑐 𝑇𝑒𝑠𝑡 
𝐴𝑁𝐷 

𝑊ℎ𝑖𝑡𝑒𝑛𝑒𝑠𝑠 𝑇𝑒𝑠𝑡 
𝐴𝑁𝐷 

𝐻𝑂𝑇 𝑇𝑒𝑠𝑡 
𝐴𝑁𝐷

𝑆𝑊𝐼𝑅

𝑁𝐼𝑅
𝑇𝑒𝑠𝑡 )

 
 
 
 
 

𝑂𝑅 𝐶𝑖𝑟𝑟𝑢𝑠 𝑇𝑒𝑠𝑡 

8 

 

  

  

  

𝑇𝑤𝑎𝑡𝑒𝑟 = 82.5𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝑐𝑙𝑒𝑎𝑟 − 𝑠𝑘𝑦 𝑤𝑎𝑡𝑒𝑟 𝑝𝑖𝑥𝑒𝑙𝑠 𝐵𝑇 9 

  

𝑤𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑃𝑟𝑜𝑏 = (𝑇𝑤𝑎𝑡𝑒𝑟 −𝐵𝑇)/4 10 

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑝𝑟𝑜𝑏 = min(𝜌𝑟𝑐
1609, 0.11) /0.11 11 

𝑤𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑏 = 𝑤𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑝𝑟𝑜𝑏 ∗ 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠𝑝𝑟𝑜𝑏  12 

 
𝐶𝑙𝑒𝑎𝑟 − 𝑠𝑘𝑦 𝑙𝑎𝑛𝑑 = 𝑃𝐶𝑃(𝑓𝑎𝑙𝑠𝑒)𝑎𝑛𝑑 𝑤𝑎𝑡𝑒𝑟 𝑇𝑒𝑠𝑡 (𝑓𝑎𝑙𝑠𝑒) 13 

(𝑇𝑙𝑜𝑤,𝑇ℎ𝑖𝑔ℎ) = (17.5, 82.5)𝑝𝑒𝑟𝑐𝑒𝑡𝑖𝑙𝑒 𝑜𝑓 𝐶𝑙𝑒𝑎𝑟

− 𝑠𝑘𝑦 𝑙𝑎𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠′𝐵𝑇 

14 

𝑙𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑝𝑟𝑜𝑏 = (𝑇ℎ𝑖𝑔ℎ + 4 − 𝐵𝑇)/( 𝑇𝑙𝑜𝑤 + 4 − (𝑇𝑙𝑜𝑤

− 4)) 

15 

𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑟𝑜𝑏

= 1 −max (𝑎𝑏𝑠(𝑁𝐷𝑉𝐼), 𝑎𝑏𝑠(𝑁𝐷𝑆𝐼),𝑊ℎ𝑖𝑡𝑒𝑛𝑒𝑠𝑠) 

16 

𝑙𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑏 = 𝑙𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑝𝑟𝑜𝑏 ∗ 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑟𝑜𝑏  17 

𝐿𝑎𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

=  82.5 𝑝𝑒𝑟𝑐𝑒𝑡𝑖𝑛𝑙𝑒 𝑜𝑓 𝑙𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑏(𝐶𝑙𝑒𝑎𝑟−𝑠𝑘𝑦 𝑙𝑎𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠) + 0.2 

18 

𝑃𝐶𝑃 𝑎𝑛𝑑 𝑊𝑎𝑡𝑒𝑟 𝑎𝑛𝑑 𝑤𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑏 > 0.5 

𝑃𝐶𝑃 𝑎𝑛𝑑 !𝑊𝑎𝑡𝑒𝑟 𝑎𝑛𝑑 𝑙𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑏 > 𝐿𝑎𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑙𝐶𝑙𝑜𝑢𝑑𝑝𝑟𝑜𝑏 > 0.99 𝑎𝑛𝑑 !𝑊𝑎𝑡𝑒𝑟 

𝐵𝑇 <  𝑇𝑙𝑜𝑤 − 35 

19 

 

Where 

 

𝑁𝐷𝑆𝐼 =
(𝜌𝑟𝑐
561 − 𝜌𝑟𝑐

1609)

(𝜌𝑟𝑐
561 + 𝜌𝑟𝑐

1609)
 

 

𝑁𝐷𝑉𝐼 =
(𝜌𝑟𝑐
655 − 𝜌𝑟𝑐

561)

(𝜌𝑟𝑐
655 + 𝜌𝑟𝑐

561)
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Figure 1: MERIS (2013-01-16) RGB image (MERIS L2 

tristimulus with adjusted histograms) for the western 

English Channel. Cloud and cloud shadow are annotated 

in the image with arrows.  

 

 
Figure 4: Total Suspended Matter product from MERIS 

(2003-01-16) MEGS 8.0 processing with the PCD_1_13 

confidence flag (red). Arrow shows example of cloud 

shadow not masked flagged.

Figure 2: Algal 2 product from MERIS (2003-01-16) 

MEGS 8.0 processing with the PCD_17 confidence flag. 

Arrows identify examples of cloud shadows that have not 

been flagged.  

 

 
Figure 3: Total Suspended Matter product from MERIS 

(2003-01-16) MEGS 8.0 processing with the PCD_16 

confidence flag. Arrows identify examples of cloud 

shadows that have not been flagged.

 

Figure 5: MERIS (2003-01-16) Chlorophyll-a processed with SeaDAS (a) and Chlorophyll-a with a LOWLW mask in red (b). 

Annotation in the zoomed subset  identifies cloud shadow pixels that have been masked in less turbid waters and cloud 

shadow pixels that have not been masked in turbid water.

Cloud Shadow 

Cloud 

Cloud shadows 
masked with low 

LW 555nm  

Cloud shadows 
not masked with 

low LW 555nm  

a)  b)  
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Figure 6: Schematic of workflow used to identify cloud and cloud shadow pixels in Landsat-8 imagery. 

 

Figure 7: Subset of land (white), water (blue-grey), cloud (orange) and cloud shadow (black) identification (left) and full 

scene RGB image (right) for Landsat-8 scene LC81990242013280LGN00. Incorrectly flagged cloud shadow shown with red 

arrow. 
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Table 1: Band characteristics of the Sentinel-3 Ocean and 

Land Colour Instrument (OLCI). Rows highlighted in blue 

show bands that match with Landsat-8/OLI.  

Band λ centre nm 
Width 
Nm 

Oa1 400 15 

Oa2 412.5 10 

Oa3 442.5 10 

Oa4 490 10 

Oa5 510 10 

Oa6 560 10 

Oa7 620 10 

Oa8 665 10 

Oa9 673.75 7.5 

Oa10 681.25 7.5 

Oa11 708.75 10 

Oa12 753.75 7.5 

Oa13 761.25 2.5 

Oa14 764.375 3.75 

Oa15 767.5 2.5 

Oa16 778.75 15 

Oa17 865 20 

Oa18 885 10 

Oa19 900 10 

Oa20 940 20 

Oa21 1020 40 

   

Table 2: Band characteristics of the Sentinel-3 Sea and 

Land Surface Temperature Radiometer (SLSTR).Rows 

highlighted in blue show bands that match with Landsat-

8/OLI. 

SLSTR band L centre [μm] 

S1 0.555 

S2 0.659 

S-3 0.865 

S4 1.375 

S5 1.61 

S6 2.25 

S7 3.74 

S8 10.95 

S9 12 

F1 3.74 

F2 10.95 
 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3: Band characteristics of Landsat-8. 

Band Wavelength (nm) 

range 

  

[central] 

GSD 

(m) 

SNR 

at reference L 

reference L 

(W m-2 sr-1 µm-1) 

F0 

(W m-2 µm-1) 

1 (Coastal/Aerosol) 433–453 [443] 30 232 40 1895.6 

2 (Blue) 450–515 [483] 30 355 40 2004.6 

3 (Green) 525–600 [561] 30 296 30 1820.7 

4 (Red) 630–680 [655] 30 222 22 1549.4 

5 (NIR) 845–885 [865] 30 199 14 951.2 

6 (SWIR 1) 1560–1660 [1609] 30 261 4 247.6 

7 (SWIR 2) 2100–2300 [2201] 30 326 1.7 85.5 

8 (PAN) 500–680 [591] 15 146 23 1724.0 

9 (CIRRUS) 1360–1390 [1373] 30 162 6 367.0 

 


