MONITORING ENVIRONMENTAL IMPACTS OF OFFSHORE WIND FARMS IN THE BELGIAN PART OF THE NORTH SEA

HARD SUBSTRATUM FAUNA

Steven Degraer, Ilse De Mesel, Francis Kerckhof, Jean-Sébastien Houziaux, Alain Norro, Jan Reubens, Bob Rumes, Magda Vincx

Presented by Ilse De Mesel & Francis Kerckhof

LEARNING FROM THE PAST TO OPTIMISE FUTURE MONITORING
• First year: samples at different depths
HARD SUBSTRATUM FAUNA

Splash zone: Dominated by *Telmatogoton japonicus*
HARD SUBSTRATUM FAUNA

Splash zone: Dominated by Telmatogoton japonicus

Infralittoral zone: from Barnacle-Jassa to Barnacle - mussel zone
HARD SUBSTRATUM FAUNA

Splash zone: Dominated by *Telmatogeton japonicus*

Infralittoral zone: from Barnacle-Jassa to Barnacle - mussel zone

Subtidal zone: species rich community
HARD SUBSTRATUM FAUNA

• First year: samples at different depths
• Afterwards:
 • focus at -15 m
 • stones from scour protection
 • semi-quantitative samples and observations in intertidal and splash zone
• Seasonal sampling
• Organisms larger than 1 mm
• Distinction between:
 • counted individuals (ind/m²)
 • coverage of species (cover%)
HARD SUBSTRATUM FAUNA

After 3 months…

- 28 species
- 1,900 ind/m²
HARD SUBSTRATUM FAUNA

After 1 year…

- 22 - 32 species
- 19,000 ind/m²
After 2 years...

- 25 - 34 species
- 185,000 ind/m²
After 3 years…

- 25 - 30 species
- 84.000 ind/m²
HARD SUBSTRATUM FAUNA

After 4 years...

- 18 - 32 species
- 120,000 ind/m²
HARD SUBSTRATUM FAUNA

Number of species

- new
- established
- single

Year 1
Year 2
Year 3
Year 4

Number of species
HARD SUBSTRATUM FAUNA

RELATIVE DENSITIES

- Sipuncula
- Platyhelminthes
- Nemertea
- Mollusca
- Echinodermata
- Cnidaria
- Arthropoda
- Annelida

Arthropoda
HARD SUBSTRATUM FAUNA

- Stenothoe valida
- Stenothoe monoculoides
- Pisidia longicorns
- Pilumnus hirtellus
- Phitiscia marina
- Pagurus bernhardus
- Necora puber
- Mesopodopsis slabberi
- Macropodia linasari
- Liocarcinus holsatus
- Jassa herdmani
- Hyperia galba
- Hippolyte varians
- Eualus sp.
- Decapoda
- Corophium acherusicum
- Cancer pagurus
- Balanus perforatus
- Balanus crenatus
- Atylus swammerdami
- Aora gracilis

ARTHROPODA

Jassa herdmani
HARD SUBSTRATUM FAUNA

ARThropoda

Jassa herdmani
Stenothoe valida
Stenothoe monoculoides
Pisidia longicornis
Pilumnus hirtellus
Phtisica marina
Pagurus bernhardus
Necora puber
Mesopodopsis slabberi
Macropodia linaresi
Liocarcinus holsatus
Jassa herdmani
Hyperia galba
Hippolyte varians
Eualus sp.
Decapoda
Corophium acherusicum
Cancer pagurus
Balanus perforatus
Balanus crenatus
Atylus swammerdami
Aora gracilis
DENSITIES

- Sipuncula
- Platyhelminthes
- Nemertea
- Mollusca
- Echinodermata
- Cnidaria
- Arthropoda
- Annelida

HARD SUBSTRATUM FAUNA

- Arthropoda
- Annelida

Legend:
- Sipuncula
- Platyhelminthes
- Nemertea
- Mollusca
- Echinodermata
- Cnidaria
- Arthropoda
- Annelida
HARD SUBSTRATUM FAUNA

DENSITIES

- Sipuncula
- Platyhelminthes
- Nemertea
- Mollusca
- Echinodermata
- Cnidaria
- Arthropoda
- Annelida
HARD SUBSTRATUM FAUNA
HARD SUBSTRATUM FAUNA

PREDATOR PREY RELATIONSHIPS

Odostomia turrita

Epitonium clathratulum

Facelina bostoniensis

Pomatoceros triqueter

Metridium senile

Tubularia larynx
HARD SUBSTRATUM FAUNA

BLIGH BANK – BELWIND WINDFARM

Similar patterns in community development
- patterns in density
- patterns in diversity
- patterns in succession

Difference in subdominant species

Due to:
- distance to the coast?
- foundation type?
HARD SUBSTRATUM FAUNA

FISH COMMUNITY

[Pie charts showing fish community changes over seasons for Wind turbines, Wrecks, and Sandy areas. Each chart is divided into sections representing different fish species: Pouting, Atlantic cod, Pollack, Horse Mackerel, Saithe, Mackerel, Dragonet, Dab, Black Seabream, Bull ron, Red Gurnard, Plaice, Common sole, Sea bass, Flounder, Dogfish.]
HARD SUBSTRATUM FAUNA

% G of pouting

<table>
<thead>
<tr>
<th>SAND</th>
<th>OWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callionymus sp.</td>
<td>43.1</td>
</tr>
<tr>
<td>Pisces sp.</td>
<td>9.8</td>
</tr>
<tr>
<td>Actiniaria sp.</td>
<td>9.7</td>
</tr>
<tr>
<td>Polychaeta sp.</td>
<td>4.7</td>
</tr>
<tr>
<td>Liocarcinus holsatus</td>
<td>4.3</td>
</tr>
</tbody>
</table>
FULLNESS INDEX OF POUTING

- July
 - Sand
 - OWF

- October
 - Sand
 - OWF
CONCLUSIONS

• Many species reach the foundation, only few establish a community

• High community dynamics during the first year, later on mainly seasonal dynamics.

• Dominance of few species (*Jassa* – Actiniaria – *Tubularia*), similar to other artificial hard substrata in the Southern North Sea

• Structuring force of generalist and specialised predators

• Fouling differs from natural hard substrata

• Fouling organisms are food for fish
FUTURE MONITORING

- Continuation of the current monitoring
- Large scale patterns:
 - on the turbines
 - onshore-offshore gradient
- Impact of foundation type:
 - on the fouling community
 - on the fish community
- Better assessment of food availability for higher trophic levels
- Scour protection: habitat for larger organisms (lobsters and crabs)
MONITORING ENVIRONMENTAL IMPACTS OF OFFSHORE WIND FARMS IN THE BELGIAN PART OF THE NORTH SEA

THANK YOU

Photo credits: Hans Hillewaert (ILVO), www.aphotomarine.com, Bernard Picton, RBINS

LEARNING FROM THE PAST TO OPTIMISE FUTURE MONITORING