Chapter 10

Model grid and spatial
interpolation

10.1 Model grid arrays

10.1.1 Array shapes

The layout of the model grid and the grid indexing system have been pre-
sented in Section [5.2.1] The shape of a model array defined on the model
grid (further denoted as “model grid arrays”) depends on its nodal location.
If the model code would have been designed for serial (non-parallel) applica-
tions only, the shape of a model grid array could be obtained from Table 5.1}
For example, the shapes of a C-node, U-node or W-node array would be
(nc,nr,nz), (nc,nr,nz) or (nc,nr,nz+1), where it is recalled that nc, nr, nz are
the (computational) grid dimensions in the X-, Y- and Z-direction.

Since the model can be set up either in serial or in parallel mode, two
additional complexities arise:

1. The parallel code is based upon non-shared memory between the pro-
cesses. This means that model grid arrays are only defined locally. The
local array shape then depends on the dimensions of the local process
domains. The local dimensions in the X- and Y-direction are given by
the process-dependent parameters ncloc and nrloc, whereas the vertical
dimension is still given by nz.

2. The solution of the discretised equations on a parallel grid requires
that the domain on which an array is defined, must extend into the
neighbouring domains. This extended area, called the halo area, is
defined by adding extra rows and columns. The maximum size of the

457

458 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

halo in each of the four directions (West/East/South/North) is given
by the parameter nhalo = 2. The actual size is array-dependent.

Examples of array shapes declarations are illustrated below.

REAL, DIMENSION(1-nhalo:ncloc+nhalo,l-nhalo:nrloc+nhalo,nz) :: sal
REAL, DIMENSION(O:ncloc+1,0:nrloc+1) :: zeta

REAL, DIMENSION(O:ncloc,O:nrloc) :: atmpres

REAL, DIMENSION(ncloc,nrloc,nz+1) :: vdifcoefscal

Example 10.1: examples of model grid array bounds.

The first array has a full size halo of two rows and columns in each direction,
the second a halo of one row and column in each direction, the third a one
column halo attached on its western boundary, whereas the last one is defined
without halo.

In Section it was explained that the last array column at the eastern
boundary and the last row at the northern boundary of the computational
grid consist of dummy land points. Important to note that this is mostly
not the case for local array definitions, i.e. the horizontal grid points with
index (ncloc,j) and i,nrloc are physical points unless one of the edges of the
sub-domain extends into one of these two dummy boundary areas.

Local arrays usually have no global equivalent in the program. However,
in case that a global array has to be defined, then it must be declared, for
consistency, with the same halo sizes as its local equivalent. For example,
the arrays

gxcoord(0:ncloc+1,0:nrloc+l), gxcoordglb(0:nc+1,0:nr+1)
are the local and global representations of the same array.

A more detailed account of parallel grids is presented in Chapter [11]

10.1.2 Parameters and arrays related to the model grid

10.1.2.1 definition of the model grid

The following parameters and arrays are required for the definition of the
model grid:

1. The number of grid cells in the X-, Y- and vertical direction: parame-
ters nc, nr, nz.

2. Horizontal grid

10.1. MODEL GRID ARRAYS 459

2.1 Rectangular uniform. The following attributes of the derived vari-
able surfacegrids(igrd_model,1) are needed:

x0dat reference coordinate z,. or longitude A,
yOdat reference coordinate y, or latitude ¢,
delxdat uniform grid spacing Az or A\ in the X-direction
delydat uniform grid spacing Ay or A¢ in the Y-direction
rotated .TRUE in case a rotated grid is selected
gridangle grid rotation angle « in case of rotated grids
yOrot reference latitude ¢/, in case of a rotated spherical grid
2.2 Rectangular non-uniform.
e The following attributes of the derived variable surfacegrids(igrd_model,1)
are required:
x0dat reference coordinate x, or longitude A,
yOdat reference coordinate y, or latitude ¢,
rotated .TRUE in case a rotated grid is selected
gridangle grid rotation angle « in case of rotated grids
yOrot reference latitude ¢/ in case of a rotated spherical
grid
e The grid spacings are stored in the arrays gdelxglb(1:nc) and
gdelyglb(1:nr) for respectively the X- and Y-direction.

2.3 Fully curvilinear.

e The coordinates are obtained with respect to a reference loca-
tion whose position is determined by attributes of the derived
variable surfacegrids(igrd_model,1)

x0dat reference x-coordinate z,. or longitude A,

yOdat reference y-coordinate y, or latitude ¢,

e The geographical locations of the cell corners (solid circles
in Figure with respect to the reference point are stored
firstly in the arrays gxcoordglb(1:nc,1:nr) and gycoordglb(1:nc,1:nr),
after which the reference coordinates are added to the arrays.
The reason for this procedure is to avoid rounding errors for
fine-resolution grids.

3. Vertical grid

460 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

3.1 Vertically uniform grid. This is the default case. The vertical grid,
i.e. o-coordinates of the cells corners are stored in the 3-D array
gscoord(1l:nc-1,1:nr-1,1:nz+1) by the program.

3.2 Vertically non-uniform, horizontally uniform.

e If the switch iopt_grid_vtype_transf is not set, the vertical ar-
ray gsigcoord(1:nz+1) is supplied and stored by the program
in gscoord(1l:nc-1,1:nr-1,1:nz+1) at each horizontal location.
Note that gscoord must be equal to 0 at the lowest and 1 at
the highest cell.

e [f iopt_grid_vtype_transf is set to 11, 12 or 13, the vertical grid
is obtained by the program using the transformation (4.23),

3.3 Vertically and horizontally non-uniform.

e [f the switch iopt_grid vtype_transf is not set, the full 3-D array
gscoord(1:nc-1,1:nr-1,1:nz+1) must be given at each horizontal
and vertical position. Note that the array must be equal to 0
at the lowest and 1 at the highest cell.

o If iopt_grid_vtype_transf is set to 21, the vertical grid is ob-
tained by the program using the [Song & Haidvogel (1994])

transformation given by equations (4.33) and (4.35)).

A list of the grid parameters and arrays defining a model grid in COHE-
RENS is given in Table [10.1]

e Local (global) means that the parameter or array is defined on the local
sub-domain (global computational grid). In case of a serial application,
local and global definitions coincide (e.g. ncloc=nc)

e The bounds of the global array are obtained from the local one by

replacing (nc,nr) with (ncloc,nrloc).

10.1.2.2 definition of the open boundaries

The following information has to be given by the user

e the number of open sea (nosbu,nosbv) and river (nrvbu,nrvbv) bounda-
ries at U- and V-nodes

e the location of the open boundaries at U- and V-nodes: arrays iobu(nobu),
jobu(nobu), iobv(nobv), jobv(nobv) where nobu, nobv are the total (open
sea and river) boundaries at U- and V-nodes

10.1. MODEL GRID ARRAYS 461

Table 10.1: Model grid parameters and arrays.

Local Global Local array bounds Purpose

name name

ncloc nc - number of grid cells in the X-
direction

nrloc nr - number of grid cells in the Y-
direction

nz nz - number of grid cells in the Z-
direction

gxcoord gxcoordglb (0:ncloc+1,0:nrloc+1) X-coordinates of the cell corners
(UV-nodes) in meters or degrees
longitude (between -180° and 180)
gycoord gycoordglb (0:ncloc+1,0:nrloc+1) Y-coordinates of the cell corners
(UV-nodes) in meters or degrees lat-
itude (between -90° and 90°)
gscoord gscoordglb (0:ncloc+1,0:nrloc+1, o-level coordinate at the W-nodes.
nz+1)

The following remarks apply:

e At a U- or V-node open boundary one of the two adjacent cells must
be wet (sea) while the other one must be either a land cell or located
outside the physical domain. This allows to define linear as well as
“ragged” (stair-case) open boundaries.

e Open sea boundaries at U-nodes must be stored in iobu(1:nosbu), jobu(1:nosbu),
river boundaries in iobu(nosbu+1:nosbu+nrvbu), jobu(nosbu+1:nosbu+nrvbu).
A similar procedure is taken at V-nodes.

e Taking account of the previous restriction, the order of storage is ir-
relevant. However, the ordering is of importance for the definition of
the open boundary conditions (see Chapter since it introduces an
indexing system, i.e. ii is (e.g.) the index of the U-open boundary
located at (iobu(ii), jobu(ii)).

Besides U- and V-open boundaries the program also uses internally the con-
cept of X- and Y-open boundaries which are defined as follows:

e A corner node is a X-open boundary if one of the adjacent U-nodes is an
open boundary and the other one a land/coastal or open sea boundary.

462 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

Table 10.2: Open boundary parameters and arrays.

Local Global Local array bounds Purpose

name name

nosbuloc nosbu - number of West/East open sea boun-
daries at U-nodes

nrvbuloc nrvbu - number of West /East river open boun-
daries at U-nodes

nobuloc nobu - total number of West/East open boun-
daries at U-nodes (nobuloc = nosbu-
loc+nrvbuloc)

nosbvloc nosbv - number of South/North open sea
boundaries at V-nodes

nrvbvloc nrvbv - number of South/North river open
boundaries at V-nodes

nobvloc nobv - total number of South/North open
boundaries at V-nodes (nobvloc = nos-
bvloc+nrvbvloc)

nobxloc nobx — number of X-open boundaries at cor-
ner nodes

nobyloc noby - number of Y-open boundaries at cor-
ner nodes

iobuloc iobu nobuloc X-indices of the West /East open boun-
daries at U-nodes

jobuloc jobu nobuloc Y-indices of the West /East open boun-
daries at U-nodes

iobvloc iobv nobvloc X-indices of the South/North open
boundaries at V-nodes

jobvloc jobv nobvloc Y-indices of the South/North open
boundaries at V-nodes

iobxloc iobx nobxloc X-indices of the open boundaries at X-
nodes

jobxloc jobx nobxloc Y-indices of the open boundaries at X-
nodes

iobyloc ioby nobyloc X-indices of the open boundaries at Y-
nodes

jobyloc joby nobyloc Y-indices of the open boundaries at Y-

nodes

10.1. MODEL GRID ARRAYS 463

e A corner node is a Y-open boundary if one of the adjacent V-nodes is an
open boundary and the other one a land /coastal or open sea boundary.

The locations of the X- and Y-open boundaries are defined within the pro-
gram and do not need to be supplied by the user.
A list of all grid parameters and arrays is given in Table [10.2]

e Local (global) means that the parameter or array is defined on the local
sub-domain (global computational grid). In case of a serial application,
local and global definitions coincide (e.g. nosbuloc=nosbu).

e The bounds of the global array are obtained from the local one by
replacing the local dimension by the global one (e.g. nobuloc by nobu).
10.1.2.3 grid spacings

Grid spacings in the horizontal direction are calculated by the standard for-
mulae

AXG = iy = \/(lﬂu — zi)* + (Yir15 — i)’

AYjj = hy; = \/(%jﬂ — 2ij)% 4+ (Yij41 — Vij)? (10.1)
or
1
AXJ = hiy; = R\/()\Hl,j — \ij)? + cos é(gbij + Giv1;)(Pig1j — bij)?
1
AYJ = Sn-j = R\/(AMH — \ij)? + cos 5(@] + Gijr1)(Pijr1 — big)?
(10.2)

depending on whether Cartesian or spherical coordinates are used. Similar
expressions are used to evaluate the grid spacings at other nodes. Grid
spacings in the vertical are calculated using h3 = HAo where H is the total
water depth and Ao the o-difference between two neighbouring levels.

The following grid spacing arrays are defined:

e grid spacing h; in meters
delxatc, delxatu, delxatv, delxatuv
e grid spacing hy in meters

delyatc, delyatu, delyatv, delyatuv

464 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION
e o-grid spacing Ao = hs/H
delsatc, delsatu, delsatv, delsatw, delsatuw, delsatvw

The last letter(s) in the variable name denote(s) the grid node where the
array is defined.

10.1.2.4 pointer arrays

Pointer arrays denote the status of a grid node (dry, wet, open boundary).
A specific array is defined for each horizontal nodal type

nodeatc status at C-nodes

0: inactive cell which can either by a permanently land cell or a sea cell
temporarily set to dry by a mask criterium in case a flooding scheme

is applied (see Section |5.4.2)

1: active (wet) sea cell
nodeatu Pointers at U-node cell faces

0: dry (land) cell face
1: coastal boundary

2: interior wet U-node
3: open sea boundary

4: river open boundary
nodeatv Pointers at V-node cell faces

0: dry (land) cell face
1: coastal boundary
2: interior wet V-node
3: open sea boundary
4: river open boundary
nodeatuv Pointer at corner (UV) nodes
0: at least two surrrounding U-nodes or at least two surrrounding V-
nodes are dry

1: interior wet node, i.e. at most one surrounding U-node and at most
one surrounding V-node is dry and none of the four surrounding
velocity nodes are open boundaries

10.1. MODEL GRID ARRAYS 465

2: X-node open boundary, in which case at least one of the surrounding
U-nodes is an open boundary while the other one is either a closed
node or open boundary, but the node is not a Y-node open boundary

3: Y-node open boundary, in which case at least one of the surrounding
V-nodes is an open boundary while the other one is either a closed
node or open boundary, but the node is not an X-node open boundary

4: the node is both a X- and a Y-node open boundary
nodeatuw Pointer at UW-node cell faces

0: dry (land) cell face or bottom cell (1) or surface cell (nz+1)
1: coastal boundary

2: interior wet UW-node

3: open sea boundary

4: river open boundary
nodeatvw Pointer at VW-node cell faces

0: dry (land) cell face or bottom cell (1) or surface cell (nz+1)
1: coastal boundary
2: interior wet VW-node
3: open sea boundary
4: river open boundary
e The values of the pointer arrays are obtained from the bathymetry

(zero water depths at land, positive depths at sea) and the positions of
the open boundaries as given by the user.

e In the current implementation the arrays are fixed in time. Dynamic
masks are foreseen in future versions.

e Local bounds in the horizontal are given by (1-nhalo:ncloc+nhalo, 1-
nhalo:nrloc+nhalo).

e All arrays, except nodeatc, have a vertical dimension of nz at U-, V-
or UV-nodes and nz+1 at UW- or VW-nodes. The vertical dimension
has been added for the future implementation of structures.

e The bottom and surface values of nodeatuw, nodeatvw are, by definition,
always equal to 1.

e In the current implementation all arrays must be vertically uniform
(with exception of the previous restriction for UW- and VW-nodes).

466 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

10.2 Interpolation of model arrays at a diffe-
rent node

Since the model uses an Arakawa C-grid, arrays often have to be interpolated
from one grid node to another one. The simplest way is to consider uniform
interpolation between neighbouring points. The following issues need to be
taken into consideration:

e Uniform averaging is no longer applicable (or at least recommended)
in case of a curvilinear grid.

e Model grid arrays are undefined at land points. Land mask can be used
to eliminate these points from the interpolation.

These points will be addressed in the discussion below.

10.2.1 Interpolation without land flags

The general formula for interpolation a quantity X defined at node “a” to
node “b” is N
et Wn X (Tns Yns 2n)

ZnNzl Wn,

where w,, are grid-dependent weight factors. In case of a uniform interpola-
tion all w,, = 1/N so that

X0y, 2) = 2=

(10.3)

N
1
b __ a
X'= ;X (T, Yns Zn) (10.4)
The parameter N depends on the number of grid dimensions involved in the
interpolation:

e N=2: interpolation along a coordinate line (1 direction). In case of non-
uniform interpolation the weights factors have dimensions of lengths.

e N=4: interpolation within a coordinate surface (2 directions). In case of
non-uniform interpolation the weight factors have dimensions of areas.

e N=8: 3-D interpolation (3 directions). In case of non-uniform interpo-
lation the weight factors have dimensions of volumes.

General rules are

e Interpolations within a grid cell are always uniform.

10.2. INTERPOLATION OF MODEL ARRAYS AT A DIFFERENT NODE 467

e By default, interpolation involving values at neighbouring cells are uni-
form. This can be overruled with the switch iopt_array_interp or by call-
ing the interpolation routines with the optional hregular and vregular
argument set to .FALSE.. The second option always takes precedence
over the first.

e The interpolation routines in the program provide an option to exclude
land points or open sea boundaries from the interpolation.

12 172 Wistj Wi
| ‘ | K‘V\‘
U(i) C@j) UG+1,j) C(i-1) UGi,j) CGi,j)
Uto C interpolation Cto U interpolation
W(@-1,j,k+1) W(,j,k+1)
Y ZA 1\ ‘F
Ci-1,)) C(i.j) 12, Y}
| | Wigk |
I I | l, N
| uv Y A i”’{}i:’l ””” AT
o W - e
; [Vel Wij b
1 1”2 Y
O----f-------- O Vo v
CG-1,-1) C(@i,j-1) . i |
\ \
_ W(i-1,j,k) W(i,j.k) _
X X
C to UV interpolation W to U interpolation

Figure 10.1: Interpolation of model grid arrays at a different node.

Examples

1. interpolation from U- to C-node:
. o, ws .
X0 g) = (X" 5) + X*(i+ 1,j)) (10.5)

2. (non-uniform) interpolation from C- to U-node:

XU(i,5) = w(i—1,5) +wli, j)

468 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION
. 1., .
w(i,j) = $hi(i,]) (10.6)

3. (non-uniform) interpolation from C- to UV-node:
X)) = ()X = 1,5 = 1) +wli = 1, /)X (0,5 1)
i, = DX = 1,5) +w(i = 1,5 =)X(i,)
J(wGi)+ wli = 1,5) + wiij = 1) +wli = 1,5 1))

L, s,) (10.7)

W) =

4. (non-uniform) interpolation from W- to U- node:

. 1 N vw :
XG0 gik) = 5wl)X~ 15k) +

w(i — 1,)X, 4, k) + w(i,) X6 — 1, §,k + 1)
w(i — 1,)X (i, , k + 1))/(w(z’,j) +w(i— 1,j)>
1

5N,) (10.8)

w(i, j)
What type of interpolation needs to be taken ?
e uniform Cartesian grids: uniform (allways)
e uniform spherical: uniform (recommended)
e non-uniform rectangular and curvilinear: user decision (depending on

the variation of grid size between neighbouring cells)

10.2.2 Interpolation with land flags

Land flags can be used to eliminate land areas or temporarily inactive cells
(in case a mask function is applied as decribed in Section [5.4.2)) from the
interpolation. The general interpolation formula with land flags becomes

N
n nXa n» n» n
2in=i 8 o (T, Yn: 2n) (10.9)

2 =1 SnWn

Xb(x,y, z) =

where s, equals 0 for flagged and 1 for non-flagged grid points. The program
foresees the following options

10.3. CURVILINEAR, INDEX AND RELATIVE COORDINATES 469

0: No flags (s,=1 everywhere).

1: Land cells and cell faces at or near coastal boundaries (except open sea
boundaries) are flagged.

2: Land cells and cell faces at or near coastal boundaries (including open
boundaries) are flagged.

3: Only cell faces at open sea boundaries are flagged (allowing the inclu-
sion of coastal boundaries in the interpolation).

As an example the formula for array interpolation from C- to UV-nodes
becomes

X (4, 5) (S(Z—lj—l w(i,)X —1,§ — 1)

S(Z7j - 1)11](2 - 17.7>Xc(7'7.j - 1)
s(i—1,j)w(i,j—1)

(i, jywli = 1,5 =)X*(0.5)) /
s(i—1,7 — Dw(i,j) +s(i,j — Dw(i — 1, 7)
+s(i — 1, j)w(i, j — 1)

w(i,j) = ihc(z J)hs (i, 7) (10.10)

+ -

/N

« ?7

Note that the flags can be applied at the source node (as given in the

equation above) as well as at the destination node “b”.

10.3 Curvilinear, index and relative coordi-
nates

Before proceeding to discuss the interpolation towards or from an exter-
nal data grid, some more detailed discussion is required how the model’s
curvilinear coordinates are related to the grix index system introduced in
Section 5.2l

Consider the grid layout as shown in Figure [10.2 The index (i,j) of a
UV-nodal grid point can be interpreted as the curvilinear coordinates (¢,
&) with respect to axes in the X- and Y-direction and origin at corner index
(0,0). Within the same frame of reference, the corresponding curvilinear
coordinates of the C-point with index (i,j) are (i+1/2,j+1/2). For U- and
V-nodal points this becomes (i,j4+1/2) and (i+1/2,j).

470 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

gy 4
! O
- .
! (i)
s
el
‘f—f‘—f—{ ————————————————————— >
0,0 gl

Figure 10.2: Curvilinear versus index coordinates.

Instead of taking the origin at the corner point with index (0,0), the origin
can be moved to the C-point with index (0,0). In that case, the curvilinear
coordinates of a corner point at (i,j) are (i-1/2,j-1/2), while the curvilinear
coordinates of a C-grid point are the same as its indices. For U- and V-nodal
points this becomes (i-1/2,j) and (i,j-1/2). Similarly, if the origin is taken at
the U-node index point (0,0), the curvilinear coordinates of a C-point, U-
point, V-point and corner point are respectively (i+1/2,j), (i,j), (i+1/2,j-1/2)
and (i,j-1/2). Finally, taking the origin at the point with V-node index (0,0),
the curvilinear coordinates becomes (i,j+1/2) for a C-node, (i-1/2,j+1/2) for
a U-node,(i,j) for a V-node and (i-1/2,j) for a corner point.

Relative coordinates are a convenient way to perform interpolation from
one to an other. Let (£,£2) be the (normalised) curvilinear coordinates of an
arbitrary point, the corresponding relative coordinates are then (i,j,x,y) where
(i,j) are the integer and (x,y) the decimal parts of (£;,£2). From the previous
discussion, the integer coordinates are taken with respect to a certain node
(C, U, V, UV). For example, if a corner index system is taken, the relative
coordinates of a C-point with index (i,j) with respect to this corner grid are

(ij,1/2,1/2).

10.4 Interpolation of a 2-D external data grid
at the model grid

10.4.1 General description of the procedure

Assume that the model grid is embedded within an external 2-D data grid
as shown in Figure The relative coordinates of the C-grid point X

10.4. INTERPOLATION OF A 2-D EXTERNAL DATA GRID AT THE MODEL GRID 471

(i,j+1) (i+1,j+1)

[l e e Rl i et il il Bt Al e el

>

W) e (i+1,)
X

Figure 10.3: Interpolation of external data to the model grid. The solid
(dashed) lines represent the external (model) grid.

with respect to the data grid at its cell corners are (i,j,x,y) where (x,y) are
expressed as normalised coordinates (i.e. between 0 and 1). The interpolated
value of data ‘d" at X is given by

d(X) = (1=2)(1=y)d(Q,j) +z(1 —y)d(i+1,5)
+(1—2)yd(i,7+1)+ayd(i+1,j+1) (10.11)

where i, j are the indices defined on the data grid.
The following remarks apply

e The model points are principally taken at C-nodes, although the method
can be applied to other nodes as well.

e If the external grid is rectangular (uniform or non-uniform), the rel-
ative coordinates can be calculated by the program. No algorithm is
currently implemented for the determination of the relative coordinates
in case of a curvilinear or unstructured data grid.

e The weight factors in ((10.11]) only depend on the locations of the exter-
nal grid and do not take account of possible land points, which should
be excluded from the interpolation. The following options are available:

1. All land points are taken into account.

2. Interpolation is only performed if at least one of the surrounding
four points is located at sea.

472 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

3. Interpolation is only performed if all the four surrounding points
are at sea.

If the data grid represents meteorological data, no disctinction is made
between land and sea points.

10.4.2 Implementation

The method can currently be applied for interpolation of surface meteoro-
logical data or (satellite) surface temperature data. Future extensions are
planned for surface wave data.

As a first step the type of the 2-D external data grid is defined via the
following derived type definition:

TYPE :: GridParams

INTEGER :: nhtype, nldat, n2dat

REAL :: delxdat, delydat, xOdat, yOdat
END TYPE GridParams

where

nhtype Type of the surface data grid.

0: single grid point

1: uniform rectangular grid

2: non-uniform rectangular grid

3: non-rectangular (curvilinear or non-structured) grid
4

: the same as the model grid

nldat number of grid cells in the X-direction
n2dat number of grid cells in the Y-direction

delxdat grid spacings in the X-direction (m or fractional degrees longitude)
when nhtype=1

delydat grid spacings in the Y-direction (m or fractional degrees latitude)
when nhtype=1

x0dat X-coordinate (Cartesian or longitude) of the lower left corner when
nhtype=1

yOdat Y-coordinate (Cartesian or latitude) of the lower left corner when
nhtype=1

10.4. INTERPOLATION OF A 2-D EXTERNAL DATA GRID AT THE MODEL GRID 473

Note that nhtype has to be supplied always if the value is different from its
default one (0). The nldat, n2dat attributes have to be given if nhtype> 0.
All surface grid attributes are stored into the array surfacegrids

TYPE (GridParams), DIMENSION(MaxGridTypes,2) :: surfacegrids

where MaxGridTypes is the maximum number of external grids. A key id of
the form igrd_* is used as index for the first dimension. The following values
are currently implemented

e igrd_meteo: surface meteorological grid

e igrd sst: sea surface temperature (SST) grid
e igrd_waves: surface wave grid

e igrd_model: model grid

The last id seems to imply that the model grid itself is considered as an
external data grid which is obviously not the case. It has only been imple-
mented as an utility in case the user wants to define a rectangular uniform
model grid (see Section [14.6.1]).

The second index can currently only take the value of 1 which means
interpolation to the model grid. The value 2 is intended for interpolation of
model data to the data grid which is currently not implemented.

The next step consists in determining the relative coordinates of all model
grid points located at sea. Use is made of the derived type definition

TYPE :: HRelativeCoords
INTEGER :: icoord, jcoord
REAL :: xcoord, ycoord

END TYPE HRelativeCoords

For example, in case of surface meteorological data, all relative coordinates
are stored in the array

TYPE (HRelativeCoords), DIMENSION(ncloc,nrloc) :: meteogrid

The relative coordinates itself can be determined by one of the following
procedures depending on the value of the nhtype attribute

0 : The external grid reduces to one data point. No interpolation is re-
quired.

1 : The external data grid is rectangular and uniform. The relative coordi-
nates are determined by the program.

474 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

2 : The external data grid is rectangular and non-uniform. The geographi-
cal (Cartesian or spherical) coordinates of the data grid are supplied by
the user. The relative coordinates are calculated by the program.

3 : The external data grid is curvilinear or unstructured. No algorithm is
provided by the program. The relative coordinates have to be supplied
by the user.

4 : The data grid coincides with the model grid. No interpolation is re-
quired.

The user procedure for defining the input of 2-D external forcing data, is
then the following:

1. The following parameters are defined by the user in usrdef_mod_params:

e Set the appropriate switch which is iopt_meteo for meteo input or
iopt_temp_sbc for SST input.

e Define the attributes of the external grid(s) in surfacegrids.
e The attributes of the following files have or may be defined:

modfiles(io_metgrd,1,1): grid locations of the meteorological grid
in case nhtype>1

modfiles(io_sstgrd,1,1) : grid locations of the SST grid in case nhtype>1

modfiles(io_wavgrd,1,1): grid locations of the surface wave grid in
case nhtype>1

modfiles(io_metsur,1,1): meteorological data file
modfiles(io_sstsur,1,1) : SST data file

modfiles(io_wavsur,1,1): wave data file

2. If nhtype>0, define the locations of the external grid. Two options are
available depending on the value of nhtype:

e The grid locations are obtained in absolute (geograhical) coor-
dinates by calling the user defined routines usrdef_surface_absgrd.
The program converts the absolute coordinates into relative ones.

e The grid locations are obtained in relative coordinates by calling
the user defined routines usrdef_surface_relgrd.

3. Define data input by calling the user-defined routines usrdef_surface_data.

10.5. INTERPOLATION OF MODEL DATA AT EXTERNAL LOCATIONS 475

Note that a usrdef_* routine is not called if the corresponding status attribute
of the associated file is set to ‘R’ in which case a corrsponding read_* routine
is called where the data are read from a file in standard COHERENS format.

Detailed descriptions of the procedures are given in Chapter (14 and Sec-
tion [I7.2.

10.5 Interpolation of model data at external
locations

10.5.1 General description of the procedure

The procedure is similar to the one discussed in the previous section, except
that the roles of the external grid and model grid are interchanged. This
type of interpolation is currently only implemented for nesting procedures,
but may be used in future versions for the development of one- or two-way
coupling with meteorological and surface wave models.

Advantage now is that the external data points no longer need to be
located on some external (structured or unstructured) “data” grid. The
only information needed by the program is the location, i.e. the relative
coordinates, of the external locations with respect to the model grid.

However, there are additional complexities which need to be taken into
account:

e Since the model uses a staggered C-grid, currents and scalar quantities
are calculated at different locations (nodes). This means that the rela-
tive coordinates need to be defined in general with respect to different
curvilinear coordinate origins (C(0,0),U(0,0),V(0,0)), whereby the type
of origin depends on the type of variable to be interpolated (C(0,0) for
C-node quantities and U(0,0), V(0,0) for vector quantitities).

e Model data located on land should be eliminated from the interpola-
tion.

e Interpolation of 3-D quantities requires that the relative coordinates
must contain a vertical dimension as well.

e The program allows to define multiple nested sub-grids within the same
main grid.

A horizontal layout of the main and sub-grid with the positions of all
points used in the interpolation on the two grids is displayed in Figure [10.4}

476 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

T
—— main grid
o - 'o - 'o - 'o - 'o - 'o - o
I I I I I I I I I I .
| | | | | | | | | 1 I subgrid
NS AN AR AN S NN AN RN N
o 5 A 5 o a o a o a } o C-node main grid
0= | | | | | | | | -0
i | | | | | i
I I I I —_— — 1 1
o 1 - L s CERE-EE T U-node main grid
| | i
0= | | -0 . .
! ! i V—node main grid
|l Sl sl Al e i A i i S E——
o | | | | | | | | o ° C-node subgrid
i | | | | | | | | i
| | | | | | | | | |
o T o F 0 0 5 o F o - U-node subgrid
0 == 1 1 1 I | | 1 1 -0
i | |
T e N | V-node subgrid
i i i
o= I I -0
i | |
| | |
- S SR R
o= I I I -0
i | | |
;_|777 ‘F’”’TI’777F’”"TI’777;’””“””!’””’1””" Il
[1 T i | T T T
0= ! ! ! -0
i |
| |
4 sl--dd--51----t-5-1- 1 1--4-41 1--2-
o o o o o o o o o o o o o o o o
Il Il Il Il Il Il
T T T T T T
o o o o o o

Figure 10.4: Illustration of the nesting procedure in the horizontal plane.
Solid lines mark the main (coarser) grid, dashed lines the (finer) sub-grids.
The empty circles and (light colour) line segments mark the points on the
main grid used in the interpolation, the filled circles and (thick) line segments
the points on the sub-grid to which interpolation needs to be performed.

Interpolation can be performed on the 2-D variables U, V, ¢ and the 3-D
variables du, dv, T', S. The number and type of data depends on the type
of open boundary conditions used by the sub-grid and the dimensions (2-D
or 3-D) of the two grids. The only restriction, imposed by the program, is
that, although the model permits to use elevation data either at external
C-nodes (the solid circles in Figure or at the velocity nodes on the open
boundaries itself (shown by the horizontal and vertical thick line segments
in the figure), only the latter form is allowed when the open boundary data
are derived from interpolation. The following five kinds of interpolation then
have to be considered in general.

1. Interpolation of U-node model values on the main grid to U-node open
boundary points on the sub-grid (U-to-U interpolation applied for U
and du)

2. Interpolation of V-node model values on the main grid to V-node open

10.5. INTERPOLATION OF MODEL DATA AT EXTERNAL LOCATIONS 477

boundary points on the sub-grid (V-to-V interpolation applied for V'
and dv)

3. Interpolation of C-node model values on the main grid to U-node open
boundary points on the sub-grid (C-to-U interpolation applied for
only)

4. Interpolation of C-node model values on the main grid to V-node open
boundary points on the sub-grid (C-to-V interpolation applied for
only)

5. Interpolation of C-node model values on the main grid to C-node open
boundary points (C-to-C interpolation applied for 7" and S).

For each type of interpolation relative coordinates have to be defined with
different nodal type and origin.

In case of a 3-D quantity (du, dv, T, S), the C-to-C, U-to-U and V-to-V
interpolation must extend to the vertical direction as well. this is achieved
by adding the vertical relative coordinates k, z to the four horizontal ones (i,
j» X, y) where k is the vertical index level of the W-, UW- or VW-node point
just below the data point at the which interpolation has to be performed
and z is (here) the normalised vertical distance (between 0 and 1) to the W-,
UW-, VW-node level. The definition is illustrated in Figure [10.5]

nz+1 w surface
I
I
I
I
|
I . . .
! vertical relative coordinates
| k: vertical cell index
I
7z " z : normalised distance to cell bottom

Loz
| ’

k :
|
I
I
I
I
|
I
I
I
|
I
I
I
I
:

1 : bottom

Figure 10.5: Definition of vertical relative coordinates.

478 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

The following remarks are to be given

e Interpolation does not take account of variations in water depth, i.e.
the vertical position at which interpolation is to performed, is assumed
to be independent in time.

e Vertical interpolation is performed prior to horizontal interpolation.
This means that the model data at the four surrounding main grid
points are firstly interpolated vertically at the same level as the des-
tination point. If a depth point is below or above the z-level of the
lowest or highest grid level, the interpolated value is set to the model
value at the lowest or highest level. The profile at the sub-grid location
is next obtained by horizontal interpolation of the four profiles using

(10.11)).

10.5.2 Implementation

The program provides the following derive type definition for storing vertical
relative coordinates

TYPE :: VRelativeCoords
INTEGER :: kcoord
REAL :: zcoord

END TYPE VRelativeCoords

Details of the code implementation are more complex than the ones in Sec-
tion [10.4.2] To simplify the discussion below, it is assumed that the program
is set up in serial mode.

1. The following parameters are defined by the user in usrdef_mod_params:

e The program switch iopt_nests is set to 1.

e The parameter nonestsets is set to the number of nested sub-grids.

e The attributes of the following files have or may be defined:
modfiles(io_nstspc,1,1) parameters to be defined in usrdef_nstgrd_spec

modfiles(io_nstgrd,1:nonestsets,1) locations of the sub-grid open boun-
dary points in absolute or relative coordi-
nates for each sub-grid

modfiles(io_2uvnst,1:nonestsets,2) output data files with interpo-
lated values of U, V', (for each sub-grid

modfiles(io_3uvnst,1:nonestsets,2) output data files with interpo-
lated values of du, dv

10.5. INTERPOLATION OF MODEL DATA AT EXTERNAL LOCATIONS 479

modfiles(io_salnst,1:nonestsets,2) output data files with interpolated
values of S

modfiles(io_tmpnst,1:nonestsets,2) output data files with interpo-
lated values of T’

modfiles(io_sednst,1:nonestsets,2) output data files with interpo-
lated values of sediments

Note that output will be written only when the status attribute of
the respective output data file is set to "W'.

2. The following arrays are defined in usrdef_nstgrd_spec

INTEGER, DIMENSION(nonestsets) :: nohnstglbc, nohnstglbu, &

& nohnstglbv, novnst, inst2dtype
INTEGER, DIMENSION(nonestsets) :: nosednst
INTEGER, DIMENSION(maxsedvars,nonestsets) :: instsed

& nohnstglbv, novnst, inst2dtype

The first three arrays represent, for each sub-grid, the number of sub-
grid open boundary points at C-, U- and V-nodes. The fourth gives
the number of vertical levels for each sub-grid and inst2dtype selects
the type of data for 2-D nesting. The arrays nosednst, instsed inform
the program how many and which fractions are used for the nesting of
sediment concentrations. For details see Sections [17.3.1] and [19.4l

3. The locations of the open boundary locations are determined for each
sub-grid. The relative coordinates for each type of interpolation are
stored in the following derived type arrays

TYPE (HRelativeCoords), DIMENSION(numhnstc) :: hnstctoc

TYPE (HRelativeCoords), DIMENSION(numhnstu) :: hnstutou, hnstctou
TYPE (HRelativeCoords), DIMENSION(numhnstv) :: hnstvtov, hnstctov
TYPE (VRelativeCoords), DIMENSION(2,2,numhnstc,numvnst) :: vnstctoc
TYPE (VRelativeCoords), DIMENSION(2,2,numhnstu,numvnst) :: vnstutou
TYPE (VRelativeCoords), DIMENSION(2,2,numhnstv,numvnst) :: vnstvtov

where
numhnstc = SUM(nohnstglbc); numhnstu = SUM(nohnstglbu)
numhnstv = SUM(nohnstglbv); numvnst = MAXVAL(novnst)

These locations are to be defined in the user. Two options are available:

480 CHAPTER 10. MODEL GRID AND SPATIAL INTERPOLATION

e The user supplies, within usrdef_nstgrd_abs, the horizontal posi-
tions in absolute (geographical) and the vertical positions, taken
as the positive distance from the mean sea level. The relative
coordinate arrays hnstctoc, ..., vnstvtov are determined by the
program.

e The user supplies, within usrdef_nstgrd_rel, the horizontal positions
in relative coordinates and the vertical positions, taken as the po-
sitive distance from the mean sea level. The horizontal coordinates
are stored in hnstctoc, hnstctou, hnstctov, hnstutou, hnstvtov, the
vertical relative coordinates are calculated by the program and
stored in vnstctoc, vnstutou, vnstvtov.

4. The following “index mapping” arrays are defined by the program

INTEGER, DIMENSION(noprocs,numhnstc,nonestsets) :: indexnstc
INTEGER, DIMENSION(noprocs,numhnstu+numhnstv,nonestsets) :: indexnstuv

where

noprocs number of processes (1 in serial mode)

indexnstc projects the local index of a C-node data point onto a “global”
index over all sub-domains

indexnstuv projects the local index of a U-node or V-node data point
onto a “global” index over all sub-domains

5. Model data are interpolated and written to the appropriate output file.
Time resolution is determined by the tlims file attribute.

Note that a usrdef_* routine is not called if the corresponding status attribute
of the associated file is set to ‘R’ in which case a corrsponding read_* routine
is called where the data are read from a file in standard COHERENS format.

Detailed descriptions of the procedures are given in Chapter [14] and Sec-
tion [I7.3

	III Description of the model code
	Model grid and spatial interpolation
	Model grid arrays
	Array shapes
	Parameters and arrays related to the model grid
	definition of the model grid
	definition of the open boundaries
	grid spacings
	pointer arrays

	Interpolation of model arrays at a different node
	Interpolation without land flags
	Interpolation with land flags

	Curvilinear, index and relative coordinates
	Interpolation of a 2-D external data grid at the model grid
	General description of the procedure
	Implementation

	Interpolation of model data at external locations
	General description of the procedure
	Implementation

