Chapter 18

Structure and discharge module

This chapter explains the setup of the structure module. The following routines are defined in *Usrdef_Structures.f90*:

- usrdef_dry_cells: setup of the dry cells module
- usrdef_thin_dams: setup of the thin dams module
- usrdef_weirs: setup of the weirs/barriers module
- usrdef_dischr_spec: specifiers for the discharge module
- usrdef_dischr_data: defines discharge data

18.1 Dry cells

The routine usrdef_dry_cells is called if iopt_drycel=1 and modfiles(io_drycel,1,1)%status='N'. Note that the number of dry cells, given by the parameter numdry must be defined in usrdef_mod_params with a non-zero value.

```
idry(numdry) (Global) X-indices of the dry cells jdry(numdry) (Global) Y-indices of the dry cells
```

18.2 Thin dams

The routine usrdef_thin_dams is called if iopt_thndam=1 and modfiles(io_thndam,1,1)%status='N'. Note that either the number of thins dams at U-nodes (parameter numthinu) or the number of thins dams at V-nodes (parameter numthinv) must be non-zero. Both parameters are defined in usrdef_mod_params.

ithinu(numthinu) (Global) X-indices of thin dams at the U-nodes jthinu(numthinu) (Global) Y-indices of thin dams at the U-nodes ithinv(numthinv) (Global) X-indices of thin dams at the V-nodes jthinv(numthinv) (Global) Y-indices of thin dams at the V-nodes

Remarks

- Thin dams can only be specified along lines parallel to one of the numerical grid axes.
- No thin dams can (obviously) be defined at open boundaries or at the edges of the computational grid.
- Thin dams perpendicular to open boundaries are allowed.

18.3 Weirs and barriers

The routine usrdef_thin_dams is called if iopt_weibar=1 and modfiles(io_weibar,1,1)%status='N'. Note that either the number of weirs/barriers at U-nodes (parameter numw-baru) or the number of weirs/barriers at V-nodes (parameter numwbarv) must be non-zero. Both parameters are defined in usrdef_mod_params.

iwbaru(numwbaru) (Global) X-indices of weirs or barriers at the U-nodes (Global) Y-indices of weirs or barriers at the U-nodes jwbaru(numwbaru) oricoefu(numwbaru) Discharge coefficient C_e for orifices at the U-nodes $[m^{1/2}/s]$ Orifice width O_w at the U-nodes [m] oriheightu(numwbaru) orisillu(numwbaru) Sill heigth O_h at the U-nodes [m] wbarcoefu(numwbaru) Discharge coefficient C_{st} at the U-nodes $[\mathrm{m}^{1/2}/\mathrm{s}]$ wbarcrestu(numwbaru) Heigth of the weir crests h_{cr} at the U-nodes [m] wbarmodlu(numwbaru) Modular limit m at the U-nodes iwbarv(numwbarv) (Global) X-indices of weirs or barriers at the V-nodes jwbarv(numwbarv) (Global) Y-indices of weirs or barriers at the V-nodes oricoefv(numwbarv) Discharge coefficient C_e for orifices at the V-nodes $[{\rm m}^{1/2}/{\rm s}]$ oriheightv(numwbarv) Orifice width O_w at the V-nodes [m] orisillv(numwbarv) Sill heigth O_h at the V-nodes [m]

wbarcoefv(numwbarv) Discharge coefficient C_{st} at the V-nodes [m^{1/2}/s] wbarcrestv(numwbarv) Height of the weir crests h_{cr} at the V-nodes [m] wbarmodlv(numwbarv) Modular limit m at the V-nodes

Remarks

- The structure is defined as a barrier if the corresponding value of oriheightu or oriheightv has a positive value, otherwise it becomes a weir.
- Energy loss at weirs and barriers can generate a strong flow convergence (retardation) and therefore large currents magnitudes and gradients. This may require small time steps.
- For the same reason, it is recommended to define weirs and barriers sufficiently away from the open boundaries.

18.4 Specifiers for discharges

The routine usrdef_dischr_spec is called if iopt_dischr=1 and modfiles(io_disspec,1,1)%status='N'. Note that the number of discharge locations, given by the parameter numdis must be defined in usrdef_mod_params with a non-zero value.

kdistype(numdis) Selects type of vertical location of the discharge

- 0: uniformly distributed over the vertical
- 1: at the bottom
- 2: at the surface
- 3: at a fixed distance from the sea bed
- 4: at a fixed distance from the sea surface

mdistype(numdis) Selects method for flagging of discharge points located on dry cells

- 0: Locations on dry (C-node) cells are taken as invalid (default)
- 1: Locations on dry (C-node) cells are moved to the nearest neighbouring wet cell, provided such cell is available
- 2: Locations on dry (C-node) cells are moved to the nearest wet cell. All locations are then considered as valid.

18.5 Discharge data

The routine usrdef_dischr_data is called if iopt_dischr=1 and modfiles(iddesc,1,1)%status='N' where iddesc is the file descriptor and ifil the file index.

The routine is declared as

```
SUBROUTINE usrdef_dischr_data(iddesc,ifil,ciodatetime,disdata,nodat,novars)
CHARACTER (LEN=lentime), INTENT(OUT) :: ciodatetime
INTEGER, INTENT(IN) :: iddesc, ifil, nodat, novars
REAL, INTENT(INOUT), DIMENSION(nodat,novars) :: disdata
```

where

iddesc The file descriptor of the corresponding data file:

io_disloc discharge locations

io_disvol volume discharge data

io_discur momentum discharge data

io_dissal salinity discharge data

io_distmp temperature discharge data

ifil The file index

nodat Number of discharge locations (must be equal to numdis)

novars Number of input data variables which depends on the value of iddesc (see below)

The data, to be defined, are:

ciodatetime date/time in string format¹

disdata discharge data

The supplied data must be given in the following order, depending on the value of iddesc

io_disloc xdiscoord X-coordinates of the discharge locations [m or fractional degrees longitude]

ydiscoord Y-coordinates of the discharge locations [m or fractional degrees latitude]

¹If the parameter time_zone is defined with a non-zero value, the time of the input data must be given in local time.

zdiscoord Vertical coordinates of the discharge locations (distance

from sea bed or sea surface depending on the value of

kdistype [m]

io_disvol disvol Volume discharge $[m^3/s]$

io_discur disarea Area over which the discharge takes place [m²]

disdir Discharge direction with respect to the reference axis

(Eastward direction on the spherical case) [rad]

io_dissal dissal Salinity of the discharged water mass [PSU]

io_distmp distmp Temperature of the discharged water mass [deg C]