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A B S T R A C T

Nearshore coastal waters are highly dynamic in both space and time. They can be difficult to sample using
conventional methods due to their shallow depth, tidal variability, and the presence of strong currents and
breaking waves. High resolution satellite sensors can be used to provide synoptic views of Surface Temperature
(ST), but the performance of such ST products in the nearshore zone is poorly understood. Close to the
shoreline, the ST pixels can be influenced by mixed composition of water and land, as a result of the sensor’s
spatial resolution. This can cause thermal adjacency effects due to the highly different diurnal temperature
cycles of water bodies and land. Previously, temperature data collected during surfing sessions has been
proposed for validation of moderate resolution (1 km pixel size) satellite ST products. In this paper we use
surfing temperature data to validate three high resolution (100 m resampled to 30 m pixel size) ST products
derived from the Thermal InfraRed Sensor (TIRS) on board Landsat 8 (L8). ST was derived from Collection 1
and 2 Level 1 data (C1L1 and C2L1) using the Thermal Atmospheric Correction Tool (TACT), and was obtained
from the standard Collection 2 Level 2 product (USGS C2L2). This study represents one of the first evaluations
of the new C2 products, both L1 and L2, released by USGS at the end of 2020. Using automated matchup and
image quality control, 88 matchups between L8/TIRS and surfers were identified, distributed across the North-
Western semihemisphere. The unbiased Root Mean Squared Difference (uRMSD) between satellite and in situ
measurements was generally < 2 K, with warm biases (Mean Average Difference, MAD) of 1.7 K (USGS C2L2),
1.3 K (TACT C1L1) and 0.8 K (TACT C2L1). Large interquartile ranges of ST in 5 × 5 satellite pixels around the
matchup location were found for several images, especially for the summer matchups around the Californian
coast. By filtering on target stability the number of matchups reduced to 31, which halved the uRMSD across
the three methods (to around 1.1K), MAD were much lower, i.e. 1.1 K (USGS C2L2), 0.6 K (TACT C1L1), and
0.2 K (TACT C2L1). The larger biases of the C2L2 product compared to TACT C2L1 are caused as a result of: (1)
a lower emissivity value for water targets used in USGS C2L2, and (2) differences in atmospheric parameter
retrieval, mainly from differences in upwelling atmospheric radiance and lower atmospheric transmittance
retrieved by USGS C2L2. Additionally, tiling artefacts are present in the C2L2 product, which originate from
a coarser atmospheric correction process. Overall, the L8/TIRS derived ST product compares well with in situ
measurements made while surfing, and we found the best performing ST product for nearshore coastal waters
to be the Collection 2 Level 1 data processed with TACT.
1. Introduction

The temperature of Earth’s surface drives heat exchange between
the surface and atmosphere and has important implications for climate
in general. Surface temperature is strongly linked to water availability
and water use, evapotranspiration, severe weather, and the growth
and metabolic rates of organisms, among other processes. Ocean tem-
perature change is described in the 5th Assessment Report (AR5) of
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the Intergovernmental Panel on Climate Change (IPCC) as among the
three key drivers of climate change impacting coastal systems (Wong
et al., 2014), with profound implications for nearshore coastal environ-
ments (Harley et al., 2006). The Global Ocean Observing System and
Global Climate Observing System consider Sea Surface Temperature
(SST) as an Essential Ocean Variable (https://www.goosocean.org/eov,
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accessed, 2021-04-10) and an Essential Climate Variable (https://gcos.
wmo.int/en/essential-climate-variables/, accessed 2021-04-10). In the
aquatic environment, thermal stratification of the water column im-
pacts nutrient and oxygen cycling and is strongly linked to the rise
and collapse of phytoplankton blooms of different species (Jones and
Gowen, 1990; Wilhelm and Adrian, 2008; Murphy et al., 2011; Mar-
tinez et al., 2011) and in shallow well-mixed waters temperature is
a determining factor of phytoplankton productivity (Trombetta et al.,
2019). The recent proliferation of (harmful) algal blooms can be linked
to eutrophication and increasing temperatures (Davis et al., 2009;
O’Neil et al., 2012), while falling sea ice coverage and increased
Atlantic water inputs are shifting the phytoplankton bloom dynamics
in the warming Arctic (Oziel et al., 2017; Neukermans et al., 2018).

Orbital sensors are the only reasonable way to consistently assess
surface temperatures (ST) at local to global scales, and as a result
satellite derived ST has found many aquatic and terrestrial applications.
Moderate resolution imagery was used to construct global climate
records of open ocean ST, e.g. Reynolds SST (Reynolds et al., 2002) and
the European Space Agency Climate Change Initiative (SST CCI) (Mer-
chant et al., 2014, 2019) that serve as inputs to climate models and
various other applications. Higher resolution imagery from Landsat has
been used for mapping of river plumes (Brando et al., 2015) and the
thermal effluent from power plants (Ingleton and McMinn, 2012) or
treated wastewater outfall pipes (Trinh et al., 2017). In the terrestrial
realm, urban heat islands have been studied using thermal satellite
data (Yuan and Bauer, 2007; Liu and Zhang, 2011), and the occurrence
of drought (Wan et al., 2004) and fire (Kaufman et al., 1998; Giglio
et al., 2003) are regularly mapped. Evapotranspiration can be estimated
with the aid of remotely-sensed ST, and Landsat in particular has the
capability to resolve water use at the field level (Anderson et al.,
2012, 2018; Senay et al., 2016). The Copernicus Land Service produces
hourly land ST at relatively coarse spatial resolution (5/112◦ grid cell
size) derived from multiple geostationary satellite observations (e.g.
Freitas et al., 2013), that can represent the diurnal temperature cycle,
and provides opportunities for improving state of the art land surface
models (Orth et al., 2017; Nogueira et al., 2020).

Various methods exist for retrieving ST from satellite sensors based
on observations either in single or multiple channels in the Thermal
InfraRed (TIR). Single channel, single window, and split-window meth-
ods tend to show similar performance, but have different requirements
for ancillary inputs (Sekertekin and Bonafoni, 2020). Single channel
methods need a representative atmospheric profile and a set of ra-
diative transfer simulations to derive the downwelling and upwelling
atmospheric radiance and the atmospheric transmittance (Barsi et al.,
2003; Cook, 2014). Knowing the target emissivity and the surface
emitted radiance allows for the computation of ST. Alternatively, single
channel algorithms – in this configuration also called single window or
mono-window algorithms – can be based on pre-generated calibration
coefficients for ranges of Total Columnar Water Vapour (TCWV). These
algorithms may be simpler to deploy and may be more computationally
efficient as no radiative transfer code has to be run, and can be readily
integrated in cloud computing platforms (Ermida et al., 2020). Split-
window algorithms similarly use a set of pre-generated coefficients and
two thermal bands to derive ST based on an estimate of TCWV and
boundary layer temperature (Wan and Dozier, 1996). For Landsat 8,
the use of single band methods using band 10 is preferred, due to stray
light issues, especially in band 11 (Barsi et al., 2014; Montanaro et al.,
2014a,b; Gerace and Montanaro, 2017), and for compatibility with
heritage Landsat sensors (Cook, 2014; Malakar et al., 2018; Sekertekin
and Bonafoni, 2020).

As the accuracy of the downstream products depends on the ac-
curacy of the input ST, validation of the satellite derived ST using in
situ measurements is of crucial importance, and is done either using
matchups with contact thermometers (Cook et al., 2014; Malakar et al.,
2018; Vanhellemont, 2020a,b) or infrared radiometers (García-Santos
2

et al., 2018; Malakar et al., 2018; Sekertekin, 2019; Vanhellemont,
2020b; Sekertekin and Bonafoni, 2020), e.g. from the SURFRAD net-
work (Augustine et al., 2000). Due to the rather consistent temperature
within a satellite pixel footprint and the well known emissivity of
water, water targets are often preferred to the much more variable land
targets. As was shown in Vanhellemont (2020a) the water ST derived
from Landsat 8 compared well with in situ measurements made at
measurement towers and buoys in the Belgian coastal zone (bias of <
0.1 K and scatter of < 0.7 K), but these are located several km from
the coast and hence results may not be representative for nearshore
waters. Recently, the use of benthic loggers (Brewin et al., 2018) and
loggers integrated into sports equipment (Brewin et al., 2015, 2017b,
2020b) has been proposed for validation of nearshore satellite ST. The
bulk temperature as measured by these accurate, affordable and easily
deployed contact thermometers was found to be ≤ 0.13 K warmer
compared to the radiative skin temperature measured by an Infrared
Sea surface temperature Autonomous Radiometer (ISAR) (Brewin et al.,
2021), rather consistent with the −0.17 K bulk-to-skin difference found
in other studies (Donlon et al., 1999).

In the present paper, temperature collected during surfing sessions
is used for the validation of high resolution imagery from Landsat 8.
ST were obtained from the new Landsat Collection 2 Level 2 prod-
ucts, as well as processed with the Thermal Atmospheric Correction
Tool (TACT, Vanhellemont, 2020a,b) using Level 1 data from both
Collection 1 and Collection 2. The Collection 2 products provided by
USGS contain ST and Surface Reflectance (SR) data, and are produced
with their internal Landsat Product Generation System (LPGS) versions
15.3 and later. TACT is an open source processor for deriving ST from
Landsat sensors (Landsat 5, 7, and 8), based on the libRadtran (Emde
et al., 2016) radiative transfer code, that can be run using various
atmospheric profile inputs. It is integrated into ACOLITE and freely
available from https://github.com/acolite/acolite. The main advantage
of TACT over Collection 2 data is the public availability of the code, and
the use of a free radiative transfer code. In this study, the performance
of these different methods is quantified using in situ matchups. To
the best of our knowledge, this work presents a first independent
intercomparison of Level 1 thermal data from both collections, as well
as an evaluation of the standard Level 2 ST product for retrieving
(Water) Surface Temperature.

2. Data and methods

2.1. In situ data

In situ measurements were obtained from: (1) surfing sessions in the
southern UK, Ireland, and San Diego, California using Tidbit v2 loggers
attached to the surfboard leash (Fig. 1; Brewin et al., 2020a,b), and (2)
surfing sessions in various locations using a Smartfin (Fig. 1; Bresnahan
et al., 2017), with temperature, motion and GPS data downloaded from
the Smartfin website (https://smartfin.axds.co/). The leash measure-
ments were processed as described in Brewin et al. (2020b), providing
geolocated, median sea surface temperature data, with uncertainties,
for each surfing session. The data are freely available through Brewin
et al. (2020a)

Smartfin data were processed following a method adapted from Brew
et al. (2020b). Firstly, Smartfin data were downloaded through the
Smartfin Application Programming Interface (API, at https://stage.
platforms.axds.co), with example scripts for accessing these data pro-
vided at https://github.com/SUPScientist/Smartfin_data_via_Axiom_API
The API provided a combined data file of motion (accelerometer) and
ocean (temperature) data at 1/6 Hz. Motion data in the combined data
file were subsampled by the data provider, from their original measure-
ment frequency at 6 Hz, to the temperature measurement frequency.
The following steps were taken to remove data that were not collected
in the water. The rate of change in temperature was computed using
the external temperature sensor (located on the tip of the fin), as was

the difference between the internal and external temperature sensor
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Fig. 1. Photo of equipment used by surfers to measure water temperature. Tidbit sensors (shaded (white) and unshaded sensor) on leash of surfboard, and Smartfin, with integrated
environmental sensor package (surfboard fin closest to the leash). Detailed descriptions of the system are provided by Brewin et al. (2015, 2017b, 2020b).
on the Smartfin. Data were flagged when the rate of change exceeded
0.05 K, and where the temperature difference between internal and
external temperature sensors was greater than 0.5 K, or less than −0.8
K. For cases where motion data were available, data were flagged
when the pitch angle of the accelerometer (smoothed with a 5-minute
filter) fell outside predetermined bounds (i.e., making use of the fact
that a surfboard is relatively flat when being surfed in the water).
Finally, the first and last 5 min of the temperature data were flagged
(i.e., typically when the surfer is entering and exiting the water).
All data were visually inspected, and for four surfing sessions (where
there were no motion data available), additional measurements were
flagged manually, that were clearly not characteristic of measurements
collected in the ocean at the time. Having identified measurements
when the Smartfin was in the water, the median of the temperature
data from the external temperature sensor was computed and taken to
be the water temperature for the surfing session. Uncertainties were
also approximated for each surf, by taking the square root of the
sum of the squared calibration error of the Smartfin (set to 0.05 K,
based on laboratory tests in Brewin et al. (2020a)) and the squared
median absolute deviation in temperature during each surfing session.
Following this processing, and consistent with the leash measurements,
geolocated, median sea surface temperature data, with uncertainties,
were available for each Smartfin surfing session.

Comparisons between leash-based Tidbit and Smartfin measure-
ments have shown excellent agreement, with no systematic differences
(after applying a correction for solar heating in the leash processing)
and with a mean absolute difference of around 0.07 K (for 141 surfing
sessions, see Brewin et al. (2020b)). Both Smartfin and leash data have
also been found to be in very good agreement with independent data
collected from benthic and pier measurements (Brewin et al., 2015,
2017b, 2018, 2020b). The Smartfin has also been evaluated against
a standard oceanographic temperature instrument (Seabird SBE38) on
an oceanographic voyage through the Atlantic (Brewin et al., 2021),
spanning a gradient in sea surface temperature (SST) of 19 K, and found
to be in excellent agreement (mean differences and mean absolute dif-
ferences of −0.01 and 0.06 K, respectively). For the combined leash and
Smartfin data, bulk temperatures were adjusted to skin temperatures
using a fixed −0.17 K offset (Donlon et al., 1999).

2.2. Satellite data

Landsat 8 (L8) has two sensors on board (Irons et al., 2012),
the Operational Land Imager (OLI), a 9-band multispectral instrument
covering the visible (VIS), near infrared (NIR), and short-wave infrared
(SWIR), and the Thermal Infrared Sensor (TIRS) with two bands in
3

the thermal infrared at around 10 and 11 μm. The OLI multispectral
data is recorded at 30 m spatial resolution in 8 channels, and at
15 m resolution in the panchromatic channel. TIRS data is recorded
at 100 metre resolution, and is resampled to the OLI 30 m grid
during Level 1 processing and geo-orthorectification. Level 1 (L1)
top-of-atmosphere data from L8 is currently available in two collec-
tions, Collection 1 (C1) and Collection 2 (C2). Released by the United
States Geological Society (USGS) near the end of 2020, C2 for the
first time includes standard Level 2 (L2) surface reflectance (SR) and
surface temperature (ST) products (USGS, 2020). For L8/TIRS, the
C2L1 processing contains several enhancements compared to C1L1,
notably a change in absolute calibration, to reduce radiometric cali-
bration errors after the 2017 stray light correction (Gerace and Mon-
tanaro, 2017), and new relative (detector-to-detector) gains to re-
duce along track striping that progressively got worse during the mis-
sion (https://www.usgs.gov/core-science-systems/nli/landsat/landsat-
collection-2-level-1-data, accessed 2021-04-10). C1L1 data were ob-
tained from Google Cloud Services (https://cloud.google.com/storage/
docs/public-datasets/landsat), and C2L1 and C2L2 data were obtained
through the USGS EarthExplorer (https://earthexplorer.usgs.gov). L1
TIRS data from both C1 and C2 were processed using TACT (Vanhelle-
mont, 2020a,b) using atmospheric profiles from the 0.25 degree ERA5
climate model, with radiative transfer results at the 0.25 degree spacing
linearly interpolated to the individual 30 m pixels. All three ST (TACT
C1L1, TACT C2L1, and USGS C2L2) are single band products derived
from band 10 (B10), at around 10 μm. The top-of-atmosphere (TOA)
radiance (𝐿𝑡) in B10 is a measurement of the surface radiance (𝐿𝑠) and
atmospheric up- (𝐿𝑢) and down-welling (𝐿𝑑) radiances (𝑊 ⋅𝑚−2 ⋅ 𝑠𝑟−1 ⋅
𝜇𝑚−1) transmitted through the atmosphere:

𝐿𝑡 = 𝜏 ⋅ (𝜖 ⋅ 𝐿𝑠 + (1 − 𝜖) ⋅ 𝐿𝑑 ) + 𝐿𝑢, (1)

where 𝜖 is the target emissivity, and 𝜏 the atmospheric transmittance.
TACT (both C1L1 and C2L1) and USGS C2L2 use radiative transfer
models to derive 𝐿𝑠 from 𝐿𝑡, respectively libRadtran (Emde et al.,
2016) and MODTRAN (Berk et al., 1999), by deriving the atmospheric
parameters (𝐿𝑢, 𝐿𝑑 , 𝜏) based on atmospheric profiles, with details
provided in Vanhellemont (2020a,b), Cook et al. (2014), and Malakar
et al. (2018). C2L2 uses emissivity values based on the ASTER Global
Emissivity Dataset (Hulley et al., 2015) adjusted by the OLI derived
Normalised Difference Vegetation and Snow Indices (NDVI and NDSI)
for land pixels, and uses a fixed emissivity of 0.9880 for water pixels.
TACT is here configured to use a fixed water emissivity value of 0.9926
for B10 (Vanhellemont, 2020a). With the atmospheric parameters and
target emissivity known, 𝐿 can be inverted from Eq. (1), and is then
𝑠
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converted to temperature (in K):

𝑇 =
𝐾2

𝑙𝑛(𝐾1
𝐿𝑠

+ 1)
, (2)

where the L8/TIRS B10 specific coefficients are 𝐾1 = 774.8853 W m−2

r−1μm and 𝐾2 = 1321.0789 K. For most plots, ST were converted from
to ◦C (using an offset of −273.15) for familiarity with the encountered

emperature ranges.
L1 OLI TOA reflectance (𝜌𝑡) data were processed using ACOL-

ITE (Vanhellemont, 2019, 2020c) to retrieve surface reflectances (𝜌𝑠)
using the Dark Spectrum Fitting (DSF) method with a fixed atmospheric
path reflectance over a 24 ×24 km region of interest centred on the
in situ data locations. OLI 𝜌𝑡 and 𝜌𝑠 were used for quality control of
matchup data (see next section).

2.3. Matchups

Same-day measurements made in situ and by satellite were identi-
fied as matchups. A 5 × 5 pixel box (at the 30 m OLI grid) centred
on the pixel containing the in situ coordinate was extracted from the
satellite imagery. These boxes were then quality controlled using simple
thresholds on the OLI reflectance. Pixels were masked if the top-of-
atmosphere reflectance (𝜌𝑡) in any band was greater than 0.3, rejecting
land, clouds, high glint and floating objects or vegetation. Further tests
were done on the 1.3 μm cirrus band, masking pixels where 𝜌𝑡 (1.3 μm)
> 0.01 to reject cirrus clouds, and the 1.6 μm band, masking pixels
where 𝜌𝑡 (1.6 μm) > 0.1 refining the test on floating objects and high
glint. Pixels with surface reflectance (𝜌𝑠) greater than 0.15 in any band
were also masked, rejecting atypical water spectra.

The matchups have varied fractions of masked pixels (MP, 0 to
24; boxes with 25 MP were rejected) and interquartile range (IQR) of
temperature (up to 4K) in the 5 × 5 pixel extracted box, and the effects
of filtering based on these values was further explored. The median
value (P50) and interquartile range (IQR, P75–P25) were computed
for each 5 × 5 pixel box to compare with the in situ measurements.
Robust statistics were computed, as commonly used in SST validation
studies (Merchant and Harris, 1999; Minnett et al., 2019). The Reduced
Major Axis (RMA) regression line was computed for the matchups, as
were the Mean Average Differences (MAD) and unbiased Root Mean
Squared Differences (uRMSD) between in situ and satellite:

𝑀𝐴𝐷 =
𝑛
∑

𝑖=0

𝑦𝑖 − 𝑥𝑖
𝑛

, (3)

𝑅𝑀𝑆𝐷 =
√

𝑅𝑀𝑆𝐷2 −𝑀𝐴𝐷2, (4)

with RMSD:

𝑀𝑆𝐷 =

√

√

√

√

𝑛
∑

𝑖=0

(𝑦𝑖 − 𝑥𝑖)
2

𝑛
. (5)

3. Results and discussion

3.1. TIRS ST

TIRS ST from the three datasets agree to within a few degrees for
the water scenes evaluated here. Among the three, TACT C2L1 data
gives the lowest temperatures, and USGS C2L2 the highest. The C2 data
(both TACT and USGS) show less noise and image artefacts compared
to the C1 data, due to the improved processing of the TIRS data during
L1 generation. Example products are shown in Fig. 2 for Smartfin and
Tidbit matchups, where the along track striping is rather obvious in
the C1L1 data and much reduced in both C2 datasets. After TACT
processing, i.e. with the same atmospheric correction parameters, the
C2L1 data are generally a bit colder than the C1L1 data, as a result of
the updated calibration in C2. A step change at around −117.5◦E can
e observed in the C2L2 product in the second example of the Smartfin
4

matchups (second row, last column of Fig. 2, 2017-08-05), here with a
magnitude of about 0.5–1 K. A similar step change can be seen in the
right hand side panel of the graphical abstract to this paper. These step
changes are in fact present in all C2L2 scenes, and originate from the
atmospheric parameters used to generate the ST, presumably as a result
of a tiling grid used in the USGS atmospheric correction. TACT products
use a per-pixel interpolated atmospheric correction which means these
step changes are not present. C2L2 uses a lower B10 emissivity factor
over water than TACT, which would partially explain higher ST for
C2L2 compared with TACT.

3.2. Matchups

A total of 88 matchups were identified between in situ and L8,
representing an in situ temperature range of about 20 K, between
approximately 7 and 27 ◦C. These matchups were distributed in the
coastal zones of Hawaii (2), California (62), Costa Rica (2), UK (20)
and Spain (2) (Fig. 3). There were 18 matchups with Tidbit data
(May 2014–August 2018) and 70 matchups with Smartfin (June 2017–
December 2019). Matchups were found throughout the year, with a
higher number in the third quarter (Q1 = 15, Q2 = 18, Q3 = 34, Q4
= 21), corresponding to summer months in the northern hemisphere.
Mean average temperatures (with standard deviation) per quarter were
Q1: 15.40 ± 5.68 ◦C, Q2: 15.51 ± 3.04 ◦C, Q3: 20.33 ± 3.42 ◦C, and

4: 17.16 ± 3.82 ◦C. The solar zenith angle ranged from 21 ◦ to 75 ◦,
with an average of 39.9 ◦.

Scatter plots of the full 88 matchup dataset are presented in Fig. 4.
These show that the scatter in the matchups is similar for the three
processing methods, with uRMSD between 1.7 and 2.0 K. This is largely
a result of the inherent sensor and image characteristics and the spatio-
temporal mismatch between the in situ and satellite measurements. The
MAD on the other hand shows that the bias increases from TACT C2L1
(0.8 K), to TACT C1L1 (1.3 K) and USGS C2L2 (1.7 K), with all methods
on average slightly warmer compared to the in situ data.

In these matchups, relatively large vertical error bars are seen,
that represent the IQR in the 5 × 5 pixel box. These are caused by
spatial variability in the 5 × 5 satellite data box, largely as a result
of close proximity to land (see e.g. Martí-Cardona et al., 2019). Points
with large IQR show a larger warm bias of the satellite measurement.
Especially the summer matchups from the San Diego area show large
IQR due to the large difference in surface temperatures between land
(>50 ◦C) and water (most points between 15–25 ◦C).

Fig. 5 shows two horizontal transects through the matchup location
for two of the San Diego area scenes (24 km ROI). These plots show
the sharp transition between colder water and warmer land surface
temperatures, and the position of the matchup location just at this
transition, with the associated high IQR. For validation purposes it is
justifiable to select stable targets, and hence matchups with high IQR
(> 0.25 K in any of the processors) were removed. Additionally, 5 × 5
boxes where less than half of the pixels do not pass the optical data
quality check were also removed, i.e. only matchups with < 13/25 MP
using the OLI criteria listed above are retained. The MAD is relatively
stable as function of MP, but the uRMSD increases rapidly when more
than 12–15 pixels are masked (not shown). The uRMSD increases
rapidly for matchups where over half the pixels in the 5 × 5 pixel box
are masked, i.e. matchups where the surfer is positioned at the land–
water edge, and hence where half of the 5 × 5 pixel box contains land.
This effect illustrates the difficulty of validating the nearshore ST, but
also shows the advantage of using data logged by surfers with variable
positions. The surfers are usually close to or at the land–water edge,
but in about 1/3 of our matchups their position is far enough to allow
for a good validation matchup, while still being in the nearshore zone.

With this more stringent filtering on the satellite data, the matchup
dataset reduces from 88 to 31 (5 Tidbit and 26 Smartfin), with about
the same temperature range. The statistics for this reduced dataset im-

prove considerably. Table 1 summarises the full and reduced matchup
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Fig. 2. Selected scenes for the matchups with Smartfin (top two rows, Costa Rica and California) and Tidbit (bottom two rows, UK summer and winter). Each row shows the OLI
𝜌𝑠 RGB composite (655, 561, 483 nm reflectance between 0 and 0.15 linearly scaled to 8 bits) and the products derived from C1L1 and C2L1 data using TACT and the USGS
C2L2 standard product. Non-water pixels are masked in white using the matchup filtering thresholds.
datasets. Fig. 6 shows the scatter plots of the high quality matchups,
showing a reduction of the scatter to about 1.1 K uRMSD, and MAD
ranging from 0.2 K (TACT C2L1), to 0.6 K (TACT C1L1) and 1.1 K
(USGS C2L2). The TACT processed data has slightly higher biases (MAD
<0.2 K versus <0.1 K) and higher noise (uRMSD 1.1 K versus 0.7 K)
compared to previous results using Collection 1 data for offshore in
situ measurements at towers and buoys (Vanhellemont, 2020a). This
is likely the influence of the very nearshore location of the present
matchups. The bias may be impacted by the bulk-to-skin correction
applied to the in situ measurements, where we subtract 0.17 K from
the in situ data to obtain equivalent skin temperature, which curiously
is about the magnitude of the C2L1 TACT bias (0.19 K). Previous work
has suggested that the skin and Smartfin differences may be smaller
than 0.17 K due to the shallow depth of the Smarfin measurements
(< 0.1 m), i.e. 0.13 K overall, and 0.06 K during the day, when the
surfers would be collecting data (Brewin et al., 2021). Brewin et al.
(2021) also suggested that in some cases, in a turbulent nearshore
5

environment, the skin cooling effect may disappear completely, which
needs to be further investigated experimentally. RMA slopes for the
matchup subset are 0.99 and 1.01 for TACT C1L1 and C2L1, while
the slope of USGS C2L2 is > 1.07, indicating that for this product the
bias increases with target temperature. On average the satellite data is
biased warm, but the bias varies slightly with the target temperature.
In Fig. 7 the difference between satellite and in situ measurement is
shown as function of the target temperature. TACT shows a cold bias
for most of the colder (<15 ◦C) and some of the warmer temperatures
(>20 ◦C) encountered in the matchup dataset. USGS C2L2 only shows
4 points with negative biases, all for the colder (<15 ◦C) temperatures.
For the higher temperatures (>20 ◦C) the bias of C2L2 is close to the
dataset average bias. The rather triangular shape of the TACT results
(Fig. 7 A and B) is caused by a remaining warm bias for some of the San
Diego matchups in the 15–25 ◦C range, presumably as a result of large
water–land temperature differences (Fig. 5). This effect is less visible in
the USGS (Fig. 7 C) dataset, since their average bias also increases with
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Fig. 3. Locations of the 88 total matchups. Tidbit data were available for California and UK coasts, while Smartfin data were obtained for all locations.
Fig. 4. Scatter plots for all 88 matchups for TACT C1L1 (A), TACT C2L1 (B), and USGS C2L2 (C). Error bars represent the IQR in a 5 × 5 pixel box (satellite) and the standard
deviation over the surfing session.
Fig. 5. Two transects through the 5 × 5 median filtered ST product for the San Diego coast, illustrating the large difference between water (pixels 0–400) and land (pixels
400–800) temperatures. The dotted lines represent the 5 × 5 filtered IQR. Note that TACT is used here with a fixed emissivity of water, and could hence underestimate the land
temperatures. Note also in the left plot the step-change at around pixel 80 in the USGS C2L2 product as a result of tiling in the atmospheric correction.
target temperature. This bias increase is a result of the atmospheric
parameters used in the USGS processing — see next paragraphs.

The differences between TACT C2L1 and USGS C2L2 data can be
attributed to both the lower emissivity used by the latter, and by differ-
ences in the atmospheric parameters (𝐿𝑢, 𝐿𝑑 , and 𝜏). When modifying
the TACT processing to use the USGS C2L2 emissivity value, the MAD
increases from 0.2 to 0.4 K (A panel of Fig. 8, and Table 1). Replacing
6

the atmospheric parameters by those of USGS C2L2, leads to an increase
of MAD from 0.2 to 1.0 K (B panel of Fig. 8). The substitution of both
emissivity and atmospheric parameters (essentially a local processing
of the provided C2L1 to USGS C2L2) leads to an increase of > 1 K in
MAD compared to TACT C2L1 processing (C panel of Fig. 8). The MAD
of this product (1.2 K) is a bit higher than that of the USGS C2L2 (1.1
K) presumably due to the discretisation of the atmospheric parameters
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Fig. 6. Same as Fig. 4 but for the 31 matchups left after filtering on 5 × 5 box temperature stability (IQR < 0.25 K) and masking level (< 13/25 MP).
Fig. 7. Same as Fig. 6 but showing the difference between satellite and in situ measurement on the Y axis.
Fig. 8. Same as Fig. 6 but replacing TACT emissivity (left) atmospheric parameters (middle) and both (right) with those from USGS C2L2.
in the C2L2 GeoTiFF files. Atmospheric radiances are discretised to
1/1000, and the atmospheric transmittance and emissivity to 1/10000.
The origin of the bias coming from the USGS atmospheric parameters
is further analysed by comparing the retrieved 𝐿𝑑 , 𝐿𝑢, and 𝜏 to those
retrieved by TACT.

Fig. 9 shows the atmospheric parameters from USGS C2L2, and also
those retrieved from the Atmospheric Correction Parameter Calculator
(ACPC, Barsi et al. (2003, 2005), accessed 2021-03-20), compared to
the ones derived in TACT for the full 88 matchups. The Ordinary Least
Squared (OLS) regression line is used to estimate the relative differ-
ences between TACT and the other sources of atmospheric parameters.
7

A significant difference between TACT and USGS C2L2 atmospheric
correction parameters is found for the 𝐿𝑑 , where USGS values are about
30% of the TACT values. For 𝐿𝑑 , ACPC retrieves an about 10% higher
value compared to TACT. However, the impact of changes in 𝐿𝑑 on
the final ST product are minor due to the high emissivity of water
(see Eq. (1)). The 𝐿𝑢 and 𝜏 are very comparable for ACPC and TACT,
with OLS slopes close to unity and low offsets (see also Vanhellemont,
2020a). Compared to TACT, for USGS C2L2 a lower 𝜏 (−6%) and for
most of the range a higher 𝐿𝑢 (offset +0.3 W m−2 sr−1μ m−2 and slope
0.93) are found, both changes that lead to higher surface temperature
retrievals. The underestimation of 𝜏 causes an additive increase of the
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Fig. 9. A comparison of the atmospheric parameters retrieved for the 88 matchups. The Ordinary Least Squares regression line is shown as is the square of Pearson’s r coefficient.
Table 1
Matchup performance of the different processors. n is the number of samples, and m the
RMA regression slope. The matchup subsets are indicated by the number of matchups
(n = 88 for all, and n = 31 for the highest quality matchups). Below the line results
of changing the emissivity and atmospheric parameters in TACT to those from C2L2
are given.
Processor Data Level Emissivity Atmosphere n MAD (K) uRMSD (K) m (1)

TACT C1L1 TACT TACT 88 1.253 1.745 1.064
TACT C2L1 TACT TACT 88 0.778 1.844 1.103
USGS C2L2 USGS USGS 88 1.703 1.979 1.152
TACT C1L1 TACT TACT 31 0.645 1.125 0.994
TACT C2L1 TACT TACT 31 0.194 1.122 1.014
USGS C2L2 USGS USGS 31 1.121 1.106 1.073

TACT C2L1 USGS TACT 88 1.005 1.916 1.096
TACT C2L1 TACT USGS 88 1.544 1.888 1.155
TACT C2L1 USGS USGS 88 1.819 1.981 1.153
TACT C2L1 USGS TACT 31 0.412 1.123 1.006
TACT C2L1 TACT USGS 31 0.977 1.108 1.076
TACT C2L1 USGS USGS 31 1.238 1.106 1.074

bias in ST, while the lower slope and non-zero offset for 𝐿𝑢 causes a
multiplicative increase of the bias in ST. In the scatter plots compared
to in situ measurements, these effects are reflected in a vertical shift
upwards and an increased slope of the USGS C2L2 points. The result
of the slope in 𝐿𝑢 is an increase of the bias as function of the target
temperature. To summarise, the USGS C2L2 product has a higher warm
bias compared to TACT, as a result of the lower emissivity value
(causing around + 0.2 K in MAD), and the difference in atmospheric
parameters (causing around + 0.8 K in MAD) used in C2L2 processing.

For a final comparison, matchups were also obtained using the sin-
gle window calibration and code of Ermida et al. (2020). This code uses
TCWV from the National Centers for Environmental Prediction (NCEP),
and ASTER emissivity data, and can be run easily on the Collection
1 data hosted on Google Earth Engine (Gorelick et al., 2017). Valid
results were obtained for 29 out of the 31 low-variability matchups,
likely due to additional cloud filtering in the Ermida processing. For
these matchups the statistics of the TACT and USGS processors are
very similar to the ones obtained before, with the same scatter and
slightly lower biases (Fig. 10). The Ermida code gives higher scatter
(2 K) and higher biases (2 K) compared to the other processors, and
hence is about 1 K warmer compared to USGS C2L2, and 1.5–2 K
warmer compared to TACT. While its implementation in Google Earth
Engine is convenient, this method cannot at present be recommended
for nearshore water surface temperature retrieval.

The nearshore supports the highest levels of marine biodiversity and
productivity in our ocean and is the region humans interact the most
with. It is among the most dynamic regions on our planet, and requires
observing systems capable of capturing this high spatial and temporal
variability. High resolution satellite observations are a critical compo-
nent of such observation systems, but to maximise their potential, they
8

Fig. 10. Same as Fig. 8 but including results using the Google Earth Engine code
of Ermida et al. (2020). 2 additional matchups where this code did not produce valid
results were removed compared to Fig. 8.

need to be carefully compared with in situ measurements, to quantify
accuracy and precision, essential for use in marine management appli-
cations. Owing to difficulties in deploying conventional oceanographic
equipment in the nearshore, new solutions to in situ data collection
in the nearshore are urgently needed. Here, we have demonstrated
how one such citizen-science based solution (Brewin et al., 2017a), is
capable of identifying the most accurate high-resolution satellite pro-
cessor. Other in situ solutions exist to, including benthic temperature
loggers (Brewin et al., 2018), coastal gliders (Rudnick et al., 2004),
autonomous beach buoy systems (Shively et al., 2016) and the tagging
of marine vertebrates with sensors (Fedak et al., 2004). Integrating all
these observations, with satellite and models, into a wider nearshore
observing system will ultimately help monitor and manage this critical
region of our oceans, in the face of uncertain environmental change.

4. Conclusions

• Three surface temperature products derived from L8/TIRS were
compared for retrieval of water surface temperatures: Collection
1 and Collection 2 top-of-atmosphere data as processed by TACT
(TACT C1L1 and C2L1), and the USGS standard Collection 2 Level
2 product (USGS C2L2). In the most stable subset of matchup
data, all three products showed a comparable uRMSD of 1.1 K,
but for both C1 and C2 data, TACT gave lower biases (MAD
respectively 0.6 and 0.2 K) compared to USGS C2L2 (1.1 K). An
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additional processor implemented on a cloud computing platform
was tested, but gave significantly larger bias and scatter.

• The higher bias of the USGS C2L2 product can be explained
by differences in the emissivity value used over water (0.9880
for USGS C2L2 and 0.9926 for TACT), and differences in the
estimated atmospheric parameters. The lower emissivity in the
USGS C2L2 product adds around 0.2 K in MAD, and the difference
in 𝐿𝑢 and lower 𝜏 combined add about 0.8 K in MAD. The
multiplicative error of the change in 𝐿𝑢 results in a bias of C2L2
that increases with target temperature.

• The Collection 2 data shows less along-track striping in the output
images compared to Collection 1 data. When Level 1 data is
processed with TACT, Collection 2 shows lower biases compared
to Collection 1 data. The standard Collection 2 Level 2 product
shows a tiling grid in the atmospheric parameters and hence the
output surface temperature, leading to step changes of about 0.5–
1 K at the borders of this tiling grid. Overall, with these results
Collection 2 data as processed by TACT show the most promising
water surface temperature products from Landsat 8 with lowest
biases and fewer processing artefacts.

• Data collected using low-cost contact thermometers integrated in
sports equipment show promise for validation of high resolution
satellite temperature products, but the transition zone between
land and water has to be handled with care, especially when one
of the two is significantly warmer than the other. Filtering based
on the concurrent optical data from OLI, and the interquartile
range of surface temperature in a 5 × 5 pixel box reduces the
impact of land proximity and mixed pixels on the validation
statistics. Surfing data could be similarly useful for validation of
nearshore data from new missions such as L9/TIRS-2, launched
in September 2021, and future missions, such as the Copernicus
Land Surface Temperature Monitoring mission (LSTM), a High
Priority Candidate Mission.
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