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ABSTRACT 

 

An intercomparison of a curve fitting and least 

squares approach is presented for the estimation of 

CHL, CDOM and TSM for two inland waters. In the 

inversion procedures two different bio-optical 

models were used, i.e. the Gordon model and the 

model of Albert and Mobley. The intercomparison is 

based on simulated APEX reflectance data. For these 

simulations two field campaigns were organised on 

the Scheldt river and Lake Constance to collect 

water samples. They were analysed for the optical 

properties and concentration values of the three 

optically active constituents. Reflectance data were 

then simulated using Hydrolight and the models of 

Gordon and Albert and Mobley. These simulations 

were used to test several inversion approaches. The 

curve fitting with the model of Albert and Mobley 

provided the best results for the Scheldt river. For 

Lake Constance no single procedure outperformed 

the others.  

 

 

1. INTRODUCTION 

 

Inland waters are very diverse and can include lakes, 

rivers, ponds, streams, springs as well as bogs, marshes 

and swamps. These inland waters are often valuable 

ecosystems that offer water supply, energy, transport 

and recreation. These values are more and more 

recognized, leading to protection measures and 

monitoring initiatives. In the Western world the 

monitoring is often regulated by laws (e.g The EU 

Water Framework Directive, 2000/60/EC) which ensure 

that the information is well documented and area 

covering .  

 

Remote sensing of inland waters is gaining importance 

since the advent of new sensors with improved spectral 

and spatial capabilities.  Remote sensing can serve as an 

additional source of information to support water 

quality monitoring programs. Best results are obtained 

by combining Remote sensing data with the results of 

traditional sampling programs.  

Data from multispectral satellite sensors such as 

NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS), and the European 

Space Agency’s Medium Resolution Imaging 

Spectrometer (MERIS) have been used to monitor 

inland waters. Budd and Warrington [2] for instance 

developed algorithms to estimate chlorophyll a and 

Total Suspended Matter (TSM) concentrations from 

SeaWiFS imagery. 

Often these satellite sensors lack the required spatial 

resolution to fulfill the monitoring tasks for inland 

waters. Airborne data or higher resolution satellite data 

could be more appropriate. Giardino et al. [3] used 

Hyperion data to test the integration of Remote sensing 

derived products into the water quality monitoring 

programs of Lake Garda.  In this study the spatial and 

spectral resolutions of Hyperion were considered highly 

suitable. Airborne datasets have been used to study 

various Finnish lakes. According to Kallio [7], Remote 

sensing can be a valuable tool, particularly in lake-dense 

regions where the number of lakes and the variation in 

the lakes is so high that only a small portion of them can 

be monitored using traditional in-situ methods.  

 

To retrieve water quality parameters for these inland 

waters different models are available in the literature. 

They range from simple site-specific empirical 

algorithms to purely analytical. In the analytical 

approach the water constituent concentrations are 

physically related to the measured reflectance spectra 

using sophisticated radiative transfer models (e.g. 

Hydrolight). These radiative transfer models are being 

used for example to generate Look-Up-Tables and train 

sophisticated neural networks [10] to retrieve 

concentrations values. 

The semi-analytical approach uses simplified bio-

optical models which describe the relationship between 

water reflectance and the concentration of constituents 

and their Specific Inherent Optical Properties (SIOPS). 

A well known bio-optical model is the one developed 

by Gordon [4]. More recently Albert and Mobley [1] 

derived  a new equation for the irradiance reflectance 

and remote sensing reflectance for deep and shallow 

water applications. These models are then inverted [5] 



 

using e.g. a least squares or a curve fitting approach [8] 

to derive concentration values.   

 

In this paper a few approaches based on these bio-

optical models are tested to retrieve concentrations of 

TSM (Total Suspended Matter), CHL (Chlorophyll) and 

CDOM (Coloured Dissolved Organic Matter).  In a first 

stage the optical properties of 2 different inland waters 

were studied. Next realistic APEX [6] (Airborne Prism 

Experiment) Remote sensing reflectances were 

simulated, which form the basis of the initial algorithm 

testing. This algorithm testing is part of the MICAS 

project and is planned to be further elaborated on 

calibrated APEX imagery, available in the second 

quarter of 2010. 

 

 

2. STUDY AREA 

To form a solid basis for algorithm testing  two inland 

waters were chosen with clear distinct water properties: 

 

 A river on the edge of its estuary at the port of 

Antwerp: The Scheldt, Belgium 

 An oligotrophic perialpine lake: Lake 

Constance, Switzerland 

 

The locations of these waters are given in Figure 1 and 

2. 

 
Figure 1: Location of the  Scheldt study site 

 
Figure 2: Location of the  Lake Constance  site 

3. METHODOLOGY 

 

3.1 Field Campaign 

 

An intensive field campaign was organized on 

18/06/2009 and 23/06/2009 on Lake Constance and the 

river Scheldt respectively. Water was sampled from 

vessels and pontoons ca. 50cm below the water surface. 

The water samples were stored in dark bottles and were 

kept cool using dry ice immediately after sampling. 

They were used for concentration measurements and to 

analyse the inherent optical properties in the lab. At 

discrete points the backscatter meter from Wetlabs was 

used and recorded backscattering information at three 

wavelengths: 440 nm, 595 nm and 780 nm.  

 

3.2 Specific inherent optical properties 

 

Water samples, taken during the field campaigns, were 

analysed in the lab for their component concentrations 

and optical properties. The specific absorption spectra 

of particles, non-algae particles and phytoplankton were 

measured using a LICOR integrating sphere attached to 

an ASD spectrometer following the methods described 

by Tassan and Ferrari [11] and REVAMP protocols 

[12].  To retrieve the CDOM absorption coefficient of 

the water samples, a beam attenuation of the filtered 

water was measured with Ocean Optics equipment in a 

transparent cuvet. As only dissolved matter is present in 

the filtered water, the attenuation spectra could be 

assumed to be equal to its absorption. Specific 

backscattering for the TSM was retrieved from in-situ 

BB-3 measurements. 

 

3.3 Simulations 

 

Reflectance data were simulated using Hydrolight, the 

bio-optical model of Albert and Mobley [1] and the bio-

optical model of Gordon [4]. The Hydrolight radiative 

transfer model calculates radiance distributions and 

related quantities like irradiance and reflectance for 

specified water, illumination and viewing conditions 

[9].  The ranges for the TSM, CDOM and CHL 

concentrations used in the simulations were chosen to 

be representative for the day of our field campaign. The 

selected ranges were: 

 

  Lake Constance: CDOM: 0.3 -> 0.45 m-1 

                              CHL: 0 -> 2 g/l 

                              TSM: 0 -> 3 mg/l 

 

Scheldt: CDOM: 1.1 -> 2.5 m-1 

              CHL: 0 -> 30 g/l 

              TSM: 20 -> 150 mg/l 
 

 



 

The same input concentrations were used for the 

simulations with the Gordon and Albert and Mobley 

models. The Gordon model is defined as follows: 

 
 
                                                       (1) 

 
with )(a  the spectral total absorption coefficient at 

wavelength  (m
-1

), )(bb  the spectral total 

backscattering coefficient at wavelength  (m
-1

) and f

an empirical factor which depends on solar and viewing 

geometry. 

 

The Albert and Mobley model starts from the Gordon 

model but adds an expression for the f-factor making 

this f-factor dependent on the optical properties, the 

solar zenith angle and the wind speed:    
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For algorithm testing (combination of semi-analytical 

model - Gordon or Albert and Mobley - and inversion 

procedure) realistic spectra were simulated with 

Hydrolight. For interpretation of the inversion 

 

 
Figure 3: Simulated subsurface irradiance reflectances 

 

procedure itself the semi-analytical models were used 

for both forward and inverse modeling. Figure 3 shows 

two sets of simulated subsurface irradiance reflectances 

(R0-), one for the Scheldt river, one for Lake Constance. 

Simulations were done with Hydrolight, the Gordon 

model and the model of Albert and Mobley. 

After the simulations the reflectance data were 

resampled to APEX wavelengths.  

 

3.4 Algorithm selection 

A least squares and curve fitting approach was tested on 

the simulated data.   

3.4.1 Linear Least Square Approach 

 

In this approach the model of Gordon [4 ] was chosen as 

bio-optical model (1). The factor f was calculated 

according to Walker [13]:  

f  = 
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                  (3) 

d is the average cosine of the downwelling light and u 

the average cosine of the upwelling light. 

The IOP )(a  and )(bb  are linear functions of the 

constituents’ concentrations and their SIOPS. Equation 

(3) can therefore be written as (omitting the wavelength 

dependencies of the factors) : 
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where   

wa
 
the absorption of pure water (m

-1
) 

bwb the backscattering of seawater (m
-1

)  

440g     CDOM absorption at 440 nm (m
-1

) 

CDOMa~  CDOM absorption normalized by the  

absorption at 440 nm (m
-1

) 

CHL  the concentration of chlorophyll-a (mg m
-
³) 

NAP  the concentration of non-algal particles (g m
-
³) 

TSM  the concentration of suspended matter (g m
-
³)  

*
, pbb

 
the specific backscattering coefficient of marine 

particles (m² g 
-1
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the specific absorption coefficient of chlorophyll-a 
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For m number of wavelengths equation (4) can be 

written as a linear system of equations : 
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To simultaneously estimate the concentrations of the 

water constituents a least-square approach was used for 

solving the system of linear equations. 

3.4.2. Curve fitting approach 

 

In the curve fitting approach TSM, CHL and CDOM 

concentrations ( Ĉ ) are estimated by minimizing the 

error between modeled ( R̂ ) and measured ( R ) spectra. 

In this approach both the model of Albert and Mobley 

and Gordon was used in the minimization. The 

measured spectra ( R ) are replaced by the simulations  to 

have full control over the inputs. The algorithm starts 

with a set of initial concentrations values for CDOM, 

TSM and CHL. The optimizer then calculates the 

RMSE between simulated ( R ) and modeled ( R̂ ) spectra 

and subsequently adjusts the input concentrations ( Ĉ ) 

until a minimum RMSE is obtained.  

 

 

 
Figure 4: Curve fitting procedure 

 

    

4. RESULTS AND DISCUSSION 

 

As a first test the curve fitting and least squares 

approaches were tested using the same model for 

forward and inverse modeling. This allows us to look 

into the errors due to the inversion procedure itself. The 

results for the TSM concentrations for the two study 

sites are shown in Figures 5 and 6. For both study sites 

the two approaches perform almost perfect. The results 

for the CHL and CDOM estimations were similar. 

 

 

Figure 5: Intercomparison of Least squares and curve 

fitting approach  for Lake Constance using the Gordon 

and Albert and Mobley bio-optical models for forward 

simulation and inverse modeling.  

 

 

Figure 6: Intercomparison of Least squares and curve 

fitting approach  for the Scheldt using the Gordon and 

Albert and Mobley bio-optical models for forward 

simulation and inverse modeling.  

 

 

In a second step, the Hydrolight simulations were used 

as input. The results are shown in Figures 7 and 8. 

 



 

 
 

 

 
 

Figure 7: Intercomparison of Least squares and curve 

fitting approach  for Lake Constance using Hydrolight 

simulations. 

 

 
 

 
Figure 8: Intercomparison of Least squares and curve 

fitting approach  for the Scheldt using Hydrolight 

simulations. 

 



 

For Lake Constance none of the inversion procedures 

performs better than the others. All procedures are able 

to estimate the TSM concentration within reasonable 

error margins. They all fail however to estimate the 0 to 

2 g/l CHL concentration. The Least squares approach 

even results in negative CHL concentration values. The 

CDOM concentration is overestimated by all three 

approaches.  For the Scheldt River, the Albert and 

Mobley curve fitting outperforms the other procedures 

for all three constituents. For these higher CHL, CDOM 

and TSM concentrations the Albert and Mobley 

performs very well. In particular for the CHL 

estimations, the Gordon model seems to be less suited. 

For both CHL and CDOM the least squares inversion 

performs worst and for low CHL concentrations the 

procedure results in negative CHL estimations. 

 

Overall the least squares approach seems to be least 

suitable to derive concentration values for CDOM, CHL 

and TSM. This approach is restricted to linear forward 

models only, in which case an analytical expression can 

be found. One of the problems of this approach is the 

presence of negative concentration values when 

applying to realistic data. A curve fitting technique, 

where non-linear models can be used, is therefore 

preferred. Particular for the Scheldt dataset, with higher 

CHL, TSM and CDOM concentrations,  it is suggested 

to have an f-factor which is dependent on the SIOPS, 

wind speed and solar zenith angle as is the case for the 

Albert and Mobley model.  

 

Further research includes the development of a new 

minimization criterion for curve fitting. Modeled and 

simulated spectra will be wavelet transformed. Instead 

of minimizing the difference between modeled and 

simulated spectra using a simple RMSE, the RMSE  

will be combined with specific wavelet features. Several 

types of errors and noise will be  added to the simulated 

spectra to find robust features.  
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