Description of model coefficient files

13 April, 2005

By Young-Je Park, Y.Park@mumm.ac.be

There are three files containing tables of the model coefficients described in Park and Ruddick, 2005 (PR05).

- 'AboveRrs_gCoef_w0.dat' for wind speed 0 m/s
- 'AboveRrs gCoef w5.dat' for wind speed 5m/s
- 'AboveRrs_gCoef_w10.dat' for wind speed 10m/s

These files can be downloaded at

http://www.mu mm.ac.be/OceanColour/Products/Models/bidirWeb.zip

Each file contains the coefficients $g_i(\theta_0, \theta, \Delta\phi, \gamma_b)$ in Eq. (6) of PR05 for the grid values:

```
7 solar zenith angles, \theta_0: 0°, 15°, 30°, 45°, 60°, 75° and 85°
```

10 sensor zenith angles, θ : 0° , 10° , 20° , 30° , 40° , 50° , 60° , 70° , 80° and 87.5°

13 relative azimuth angles, $\Delta \phi$: 0 - 180° at 15° intervals

8 values of the γ_b parameter: 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.99

The coefficients were based on simulations made under assumptions of homogeneous deep water column, cloud-free sky and no trans-spectral interaction. More on the simulation can be found on PR05.

[File format]

- After the first 5 lines, there is a block that consists of 9 lines:

```
1<sup>st</sup> line of three numbers - indicating the three angles (\theta_0=0, \theta=0, \Delta \phi=0)
```

- Followed by repetitions of the same 9-line blocks but for other combinations of $(\theta_0, \theta, \Delta \phi)$:

```
\begin{array}{l} 2^{nd} \  \, block \  \, for \  \, \theta_0{=}0, \, \theta{=}0, \, \Delta \varphi{=}15 \\ 3^{rd} \  \, block \  \, for \  \, \theta_0{=}0, \, \theta{=}0, \, \Delta \varphi{=}30 \\ \dots \\ 13^{rd} \  \, block \  \, for \  \, \theta_0{=}0, \, \theta{=}0, \, \Delta \varphi{=}180 \\ 14^{th} \  \, block \  \, for \  \, \theta_0{=}0, \, \theta{=}10, \, \Delta \varphi{=}0 \\ \dots \\ 26^{th} \  \, block \  \, for \  \, \theta_0{=}0, \, \theta{=}10, \, \Delta \varphi{=}180 \\ \dots \\ 10^{rd} \  \, block \  \, for \  \, \theta_0{=}0, \, \theta{=}10, \, \Delta \varphi{=}180 \\ \dots \\ 10^{rd} \  \, block \  \, for \  \, \theta_0{=}85, \, \theta{=}87.5, \, \Delta \varphi{=}180 \\ \end{array}
```

In total, there are 5+7*10*13*9 lines in each file.

[How to use the table]

Idl source files are provided to show an example of how to read the model coefficients.

- -'readLut.pro' to read the coefficient look-up table
- -'example.pro' to output interpolated coefficients for given inputs of $(\theta_0, \theta, \Delta \phi, \gamma_b)$.

These files can also be downloaded at

http://www.mumm.ac.be/OceanColour/Products/Models/bidirWeb.zip

To run the idl programs, compile the two files, and run the procedure 'test'. You can change the values of θ_0 , θ , $\Delta \phi$, γ_b in the 'test' procedure. In these idl programs, interpolation function for wind speed is

ot included although three different wind speeds are selected by switching the filename of the look-up able in the 'test' procedure.	