The use of artificial intelligence algorithms to assess ecological patterns from marine landscapes. The RIOSAMP experience.

Annette Grilli and Tania Lado Insua University of Rhode Island Ocean Engineering and Graduate school of Oceanography USA

Corresponding author: agrilli@ oce.uri.edu

RIOSAMP Project

Coastal Resource Management Council (CRMC)- Fugate		SAMP Management Team Fugate – McCann- Spaulding - Nixon – De Bow			
Ocean Engineering	Graduate School of Oceanography	College of Environment and Science	College of Art and Science	Coastal Research Institute	
 Hydrodynamics and sediment transport [Grilli S. and Harris] Acoustic [Miller & Potty] Geotechnics [Baxter] Wind Resource Assessment [Grilli A. and Spaulding] Siting and Environmental Impact [Grilli A. and Spaulding] 	 Oceanography [Codiga and Ullman] Mammals [Kinney] Geology and Habitat (King) Fisheries (Coolie) Primary productivity (Nixon&Oviate) Meteorology(Merril) 	 Birds [Paton] Fisheries [Smythe] GIS [Damon] 	• Archeology[Mather]	•Outreach (McCann)	

Objectives:

- Provide up to date scientific information to guide CRMC in its renewable energy permit policy
- Provide a zoning map of the SAMP area identifying optimal area for wind farm siting

Wind Farm Siting Optimization

Wind Farm Siting Index (WiFSI)

SAMP Ecosystem based Management (EBM) conceptual Framework

GOAL: keep a healthy, productive and resilient ecosystem which provides to human the services they need (ecosystem services)

Nomenclature of Karen McLeod and Heather Leslie (2009). Modified according to Oumeraci, 2011

С

A

Ecological Service

Data

Fish Biomass (Bohaboy and Coolie, 2010) (Malek and Coolie,2010)

Mammals (Sightings nb/unit effort (Kenney, 1986) Vigness- Raposa and Kinney, 2010. 16 species

Dolphins: short beaked, right sided,bottlenose

Whales:Atlantic Right Humpback , fin (Endangered)

Porpoise and seals: Harbor porpoise, harbor seals

American lobster, Homarus americanus Alewife, Alosa pseudoharengus Atlantic sea scallop, *Placopecten* magellanicus Atlantic cod, Gadus morhua Atlantic herring, *Clupea harengus* Atlantic mackerel, Scomber scombrus Black sea bass, Centropristis striata Bluefish, Pomatomus saltatrix Blueback herring, Alosaaestivalis Butterfish, Poronotus triacanthus Little skate, Leucoraja erinacea Longfin squid, Loligo pealeii Scup, Stenotomus chrysops Silver hake, Merluccius bilinearis Stripped bass, *Morone saxatilis* Summer flounder, Paralichthys dentatus Winter flounder, *Pseudopleuronectes* americanus Winter skate, Leucoraja ocellata

Ecological Data Analysis

STATISTICAL DISTRIBUTION LOG-NORMAL DISTRIBUTIONNORMALISATION

SPATIAL INTERPOLATION MINIMUM 30 POINTS
KRIGGING ON 250X 250 M GRID
STATISTICAL DISTRIBUTION CONSERVED

MULTIVARIATE SPATIAL ANALYSIS

PRINCIPAL COMPONENTSCLUSTER ANALYSYS (K-MEANS)

Ecological Typology

Spring

Ecological Service Sensitivity To Wind Farm Impact

Ecological Service Sensitivity Index To Wind Farm Impact

Construction phase (Spring)

Operation Phase (Spring)

Grilli, A.R., Lado, T., and M. Spaulding 2012. A protocol to include ecosystem services in a wind farm cost model. *J. Environmental Engineering* 139:2, 176-186, doi:10.1061/(ASCE)EE.1943-7870.0000599

Wind Farm Siting Index [WiFSI] Resources

$$WiFSI = \frac{w_1 * TC + w_2 * ESI + w_3 * FSI}{WP}$$

$$Wind Power$$

$$Wind Power$$

$$E cological service E sensitivity E$$

Cost

Grilli, A.R., Lado, T., and M. Spaulding 2012. A protocol to include ecosystem services in a wind farm cost model. *J. Environmental Engineering* 139:2, 176-186, doi:10.1061/(ASCE)EE.1943-7870.0000599

OPTIMIZATION RESULTS

Genetic Algorithm – Include WaSP Wake model in optimization function

Relative 20 years gain: \$ 11 M

O'Reilly C., Grilli A. and Potty G. 2013. Micrositing Optimization of the Block Island Wind Farm, RI, USA. Proceeding of the International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013), Nantes June 9-14, 2013

Marine Landscapes

Shumchenia E. and A.R. Grilli, 2012. Enhanced ocean landscape and ecological value characterization for the Rhode Island Ocean Special Area Management Plan study area using Habitat Typology and Habitat Template .IOSI) project, Technical Report.

Data

Variable name	Description	Unit	Source
Tidal velocity*	Maximum tidal velocity	m/s	ROMS modeling Grilli S. et al. 2010; Harris et al., 2012.
Significant wave height*	95 % Significant wave Height in a 50 year storm event	m	STWAVE modeling Grilli A. et al 2008
Depth*	Water Depth	m	NGDC Coastal Relief Model
Distance to shore	Distance from each grid cell to closest point to shore	km	Grilli A. et al, 2010
Slope	Maximum slope between 2 grid cells (200 m apart)	Deg.	NGDC Coastal Relief Model ; SURFER toolbox
Roughness	Slope Standard deviation in 1000 m radius		LaFrance et al. 2010
Phi median	Sediment median diameter (on a phi scale ; Φ = -log ₂ D _{mm})	Φ	SEABED: Atlantic coast offshore surficial sediment data. US Geological Survey Reid et al. 2005
Clay	Fraction of clay in sediment	%	SEABED: Atlantic coast offshore surficial sediment data. US Geological Survey Reid et al. 2005
SST Spring	Mean Seasonal Sea surface Temperature (Spring)	Degree Celsius	Satellite data NASA Terra and Aqua (MODIS sensors)Codiga et Ullman, 2010
Stratification Spring	Buoyancy frequency squared 0.25 to 2.5 km resolution	s ⁻²	FVCOM modeling. Codiga et Ullman, 2010 Chen et al (2006)
SST Fall	Mean Seasonal Sea Surface Temperature (Fall)	Degree Celsius	Satellite data NASA Terra and Aqua (MODIS sensors)Codiga et Ullman, 2010

17 variables Similar variables to Degraer's Belgium environment typology (2012)

Stratification Fall	Buoyancy frequency squared 0.25 to 2.5 km resolution	S	FVCOM modeling Codiga et Ullman, 2010 Chen et al (2006)
Aspect Ratio	Slope directionality	Degree [0- 360]	NGDC Coastal Relief Model ; Satellite data NASA Terra and Aqua (MODIS sensors) SURFER toolbox
BPI fine scale	Bathymetric position index fine scale [negative values indicate a canyon; positive values indicate a ridge; around 0, flat or constant slope]		NGDC Coastal Relief Model and GIS
BPI large Scale	Bathymetric position index large scale[negative values indicate a through; positive values indicate a ridge; around 0, flat or constant slope]		NGDC Coastal Relief Model and GIS
North-ness	North -South component in slope sin(Aspect Ratio) positive value indicates North-ness		NGDC Coastal Relief Model and GIS
East-ness	West-East component in slope Cos(Aspect Ratio) positive value indicates East-ness		NGDC Coastal Relief Model and GIS

Shumchenia E. and A.R. Grilli, 2012. Enhanced ocean landscape and ecological value characterization for the Rhode Island Ocean Special Area Management Plan study area using Habitat Typology and Habitat Template .IOSI) project, Technical Report.

Principal Components Analysis

PC1: Offshore-ness/coastal-ness
PC2: Sedimentology
PC3: Fresh Water input
PC4: Large scale geomorphology
PC5: Fine scale geomorphology
PC6: Upwelling

- PC analysis is a rotation of the original axes in the directions which explains the maximum variance.
- The new rotated axis or PC are independent. Few explains most of the variance.

Typology:

Cluster Analysis

41.6				
41.5 -		A MARCA		
41.4			1	
41.3 -				
41.2	See 28	<u> </u>		
41.1				
41-			-	
40.9		je je		
40.8				
-72	-718 -716	-714 -712	-71 -70.8	-70.6

Cluster	PC 1 Offshoreness	PC 2 Sedimentology	PC 3 Fresh Water [<i>cold</i> <i>currents</i>]	PC 4 Large Scale Geomorphology	PC 5 Small Scale Geomorphology	PC 6 Upwelling stratfication
1	Intermediate	Medium sand	Х	Relatively smooth		
2	Intermediate	Fine Sand/clay	XX	Relatively rough		
3	Coastal shallow water					
4	Offshore shallow water	Medium sand		Smooth	Smooth	
5		Fine sand/clay	XX	High roughness	High roughness	
6	Coastal	Fine sand/clay	warm			
7	Intermediate		warm			Х
8	Offshore deep water	Medium sand				Х
9	Offshore deep water	Fine sand/clay				

Pattern Recognition(AI) Neural Network

Automatic recognition from 5 Abiotic variables:

Depth Temperature Stratification Roughness Phi median

Target ecological regions

Support Vector Machine(SVM)

Vapnick, 1995

Non Linear generalisation of the Generalized Portrait [Vapnick and Chervonenkis, 1964]

Support vector machines = dual to maximum margin classifiers (MMC) Dual obtained by applying Lagrangian optimization theory to MMC optimization problem

SVM Non Linear Regression

- Some target function $f: X \rightarrow R^n$
- A training data set D $D = \{(x,y) \mid x \in S \text{ and } y = f(x)\}$
- Compute a model

Objectives 1. Automatic Pattern recognition 2. "Novelty" detection (outliers)

Pattern Recognition

Support Vector Machine (AI)

Use of non-linear regression to predict mammals distribution from abiotic variables

 $R^2 = 88\% 5-fold$

Abiotic Variables: depth, surface temperature, stratification, bottom Roughness, % clay, phimedian

WinMon.BE Conference 27-28 November 2013 - Royal Belgium Institute of Natural Sciences, Brussels

Mammals Abundance Spring Observations

Mammals Abundance Spring Predictions

Homarus Americanus Spring

WinMon.BE Conference 27-28 November 2013 - Royal Belgium Institute of Natural Sciences, Brussels

Predictions SVM 3-Fold

Homarus Americanus Spring

WinMon.BE Conference 27-28 November 2013 - Royal Belgium Institute of Natural Sciences, Brussels **Predictions Random Forest**

Photograph by Andrew Wong, 2008 International Photography Contest

© COPYRIGHT NATIONAL GEOGRAPHIC SOCIETY. ALL RIGHTS RESERVED.