

Environmental Impacts of Offshore Wind Farms

High Resolution Digital Stills for Aerial Survey: Seabirds & Marine Mammals

Mark Rehfisch, Stephanie McGovern & Nicola Goodship (APEM Ltd)

Welcome

Today's presentation will cover:

- Use by Government Agencies & Regulators
- Use by industry
- Methods Capturing the data
 - Image interpretation & QA
 - Statistical analysis
- Value of information
- Conclusions & Future

UK Regulator Acceptance

Outer Thames Estuary Special Protected Area (Natura 2000)

- Monitoring of red-throated diver
- Highest count of divers in Europe
- Contracted by Natural England

Carmarthen Bay SPA / N2K

- Monitoring of common scoters
- Contracted by Countryside Council for Wales (now Natural Resources Wales)

Pentland Firth Area

- Strategic assessment of wave and tidal lease areas
- Multiple Special Protected Areas within the vicinity
- Contracted by Marine Scotland

Wind farm licences: who got what

1. The Moray Firth zone EDP Renováveis and SeaEnergy Renewables. Potential yield: 1.3GW

2. Firth of Forth zone SSE Renewables and Fluor. Potential yield: 3.5GW

3. Dogger Bank zone SSE Renewables, RWE npower renewables, Statoil and Statkraft. Potential yield: 9GW

4. Hornsea zone

Mainstream Renewable Power and Siemens Project Ventures, and also involving Hochtief Construction. Potential yield: 4GW

5. Norfolk Bank zone ScottishPower Renewables and Vattenfall. Potential vield: 7.2GW

6. Hastings zone E.ON Climate and Renewables UK. Potential yield: 0.6GW

7. Isle of Wight zone Eneco New Energy. Potential yield: 0.9GW

8. Bristol Channel zone RWE npower renewables. Potential yield: 1.5GW

9. Irish Sea zone Centrica Energy. Potential yield: 4.2GW

Industry Support

United Kingdom

- All UK Round 3 Offshore Wind Farm projects surveyed fully or in part by aerial digital methods
- >30GW of renewable projects have been surveyed since 2009 (wind, wave, tidal)
- East Anglia ONE first project seeking consent using aerial data as the primary data source
- Acceptance by UK Statutory Nature Conservation Agencies and Regulators
- Used for strategic and project impact assessments

Germany

 New StUK+ standard environmental investigation programme of BSH requires aerial digital survey

USA

Maryland &Texas windfarms use digital methods

Rest of the World

To follow.....

- Flight conditions & planning
 - Flight height to meet objectives (eg 1000-1200 feet under cloud)
 - Chose good weather days(!)
 - Avoid sea state > 5 as birds difficult to see in breaking waves
 - Avoid midday sun that causes glare/glint in images (software)
 - Have surveyed > 300 km from land
- Camera systems
 - Expensive: APEM has 500 000 € bespoke systems (60 Megapixels with forward motion compensation on 2 axes for accuracy)
 - Multispectral (RGB, NIR bands) & high resolution (2 cm standard)

- Survey design
 - Special for each survey depending on site, species & questions
 - Chose the best resolution: normally 5 cm, 3 cm or 2 cm

Effect of image resolution on identification

Bird group / species	Latin name	Image resolution		
		5 cm	3 cm	2 cm
Geese	<i>Anser</i> spp.	X	\checkmark	✓
Ducks	eg Melanitta , Clangula spp.	X	\checkmark	✓
Divers	Gavia spp.	Χ	\checkmark	\checkmark
Northern Fulmar	Fulmarus glacialis	Χ	\checkmark	\checkmark
Shearwaters	eg Puffinus spp .	Χ	\checkmark	✓
Petrels	eg Hydrobates spp.	Χ	\checkmark	\checkmark
Northern Gannet	Morus bassanus	\checkmark	\checkmark	\checkmark
Cormorant / Shag spp.	Phalacrocorax spp.	\checkmark	\checkmark	\checkmark
Grebe Species	<i>Podiceps</i> spp.	Χ	\checkmark	\checkmark
Skuas	Stercorarius spp.	Χ	\checkmark	\checkmark
Small gulls	eg Rissa tridactyla, Larus canus	Χ	\checkmark	\checkmark
Large gulls	eg Larus fuscus, L.argentus	Χ	\checkmark	\checkmark
Terns	eg Sterna spp.	Χ	\checkmark	\checkmark
Auks	eg Uria aalge, Alca torda	Χ	\checkmark	\checkmark
Seals	eg Halichoerus grypus, Phoca vitulina	Χ	\checkmark	✓
Harbour porpoise	Phocoena phocoena	\checkmark	\checkmark	\checkmark
Dolphins	eg Delphinus delphis, Tursiops truncatus	X	\checkmark	✓

^{√ &}gt; 80% individuals identified to species

^{✓ &}gt; 50% individuals identified to species

- Survey design
 - Special for each survey depending on site, species & questions
 - Chose the best resolution normally 2, 3 or 5 cm
 - Choose Grid or Transect
 - Specialist software plots flight lines & nodes
 - Camera only fires when target location reached

Methods: Grid-based surveys

- Back to first principles
- Classic design quadrat style
- Independent samples of population statistically preferable
- Grids make no a priori assumption about environmental variables
- Trade off between percentage coverage & processing cost

Methods: Transect-based survey

- Strips of abutting imagery
- Maximum percentage survey coverage in short space of time
- Direct comparison to boat survey transects

- Data flow summary
 - Data downloaded when plane lands
 - Raw data & GPS logs backed up on to hard drives kept in two places
 Quality Control to ensure data of suitable quality & correct transects
 - Each image file geo-referenced from GPS log

- Run through detection algorithm to identify possible birds / mammals

- Image Analysis & Quality Assurance
 - Automated image analysis
 - Species identification
 - Bird parameters location, flight height & flight direction

- Image Analysis & Quality Assurance
 - Automated image analysis
 - Species identification
 - Bird parameters location, flight height & flight direction

- Image Analysis & Quality Assurance
 - Automated image analysis
 - Species identification
 - Bird parameters location, flight height & flight direction

Rose diagrams of flight directions

- Image Analysis
 - Automated image analysis
 - Species identification
 - Bird parameters location, flight height & flight direction
- Quality Assurance procedures
 - Internal checking
 - External independent checking

Statistical Analysis & Support Tools

Too much to describe in the time available, eg

- Availability bias
- Design-based modelling
- Generalized Additive Modelling (GAM)
- Migration Models
- Population Viability Analysis
- > etc.

Statistical Analysis & Support Tools

Example high-resolution snags

Species ID from high-resolution imagery

Species ID from high-resolution imagery

Information provided by aerial survey

- Rapid and cost effective surveys of large marine areas
- Population estimates eg wintering red-throated divers
- Identification of potential MPAs / Natura 2000 sites
- MPA condition monitoring eg O. Thames & Carmarthen Bay SPAs
- Information for offshore Environmental Impact Assessments (EIAs)
- Information for offshore Before-After-Control-Impact (BACI) studies
- Information for scientific research

High Resolution Digital Still Images: Conclusions

- Human error of boat and aerial visual surveys reduced
- Reliable no monthly surveys in North Sea missed for 3 years
- Little or no disturbance to animals due to >300 m flight height
- Geo-referencing accurate & precise
- Images Quality Assured
- Images are a permanent record
- Images available for statistical (re-)analysis or to answer future questions of biological interest
- Always improving in 5 years from 5 cm to 2 cm pixel resolution, from auk to wintering guillemot or razorbill
- Can we survey birds accurately at night?

Thank you for listening. Any questions?

Mark Rehfisch, PhD

APEM Head of Ornithology

M.Rehfisch@APEMLtd.co.uk

Stephanie McGovern, PhD

APEM Biometrician

S.McGovern@APEMLtd.co.uk